4 resultados para minimum energy control

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gaussian-3 (G3) model chemistry method has been used to calculate the relative ΔG° values for all possible conformers of neutral clusters of water, (H2O)n, where n = 3−5. A complete 12-fold conformational search around each hydrogen bond produced 144, 1728, and 20 736 initial starting structures of the water trimer, tetramer, and pentamer. These structures were optimized with PM3, followed by HF/6-31G* optimization, and then with the G3 model chemistry. Only two trimers are present on the G3 potential energy hypersurface. We identified 5 tetramers and 10 pentamers on the potential energy and free-energy hypersurfaces at 298 K. None of these 17 structures were linear; all linear starting models folded into cyclic or three-dimensional structures. The cyclic pentamer is the most stable isomer at 298 K. On the basis of this and previous studies, we expect the cyclic tetramers and pentamers to be the most significant cyclic water clusters in the atmosphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Theory predicts the water hexamer to be the smallest water cluster with a three-dimensional hydrogen-bonding network as its minimum energy structure. There are several possible low-energy isomers, and calculations with different methods and basis sets assign them different relative stabilities. Previous experimental work has provided evidence for the cage, book, and cyclic isomers, but no experiment has identified multiple coexisting structures. Here, we report that broadband rotational spectroscopy in a pulsed supersonic expansion unambiguously identifies all three isomers; we determined their oxygen framework structures by means of oxygen-18–substituted water (H218O). Relative isomer populations at different expansion conditions establish that the cage isomer is the minimum energy structure. Rotational spectra consistent with predicted heptamer and nonamer structures have also been identified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Potential energy curves have been calculated for CnH22+ (n = 2−9) ions and results have been compared with data on unimolecular charge-separation reactions obtained by Rabrenović and Beynon. Geometry-optimized, minimum energy, linear CnH22+ structures have been computed for ground and low-lying excited states. These carbodications exist in stable configurations with well depths greater than 3 eV. Decomposition pathways into singly charged fragment ions lead to products with computed kinetic energies in excess of 1 eV. A high degree of correlation exists between experimental information and results computed for linear CnH22+ structures having hydrogen atoms on each end. The exception involves C4H22+reactions where a low-lying doubly charged isomer must be invoked to rationalize the experimental data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Investigation uses simulation to explore the inherent tradeoffs ofcontrolling high-speed and highly robust walking robots while minimizing energy consumption. Using a novel controller which optimizes robustness, energy economy, and speed of a simulated robot on rough terrain, the user can adjust their priorities between these three outcome measures and systematically generate a performance curveassessing the tradeoffs associated with these metrics.