2 resultados para micro-droplets formation
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Microfluidic devices can be used for many applications, including the formation of well-controlled emulsions. In this study, the capability to continuously create monodisperse droplets in a microfluidic device was used to form calcium-alginate capsules.Calcium-alginate capsules have many potential uses, such as immunoisolation of cells and microencapsulation of active drug ingredients or bitter agents in food or beverage products. The gelation of calcium-alginate capsules is achieved by crosslinking sodiumalginate with calcium ions. Calcium ions dissociated from calcium carbonate due to diffusion of acetic acid from a sunflower oil phase into an aqueous droplet containing sodium-alginate and calcium carbonate. After gelation, the capsules were separated from the continuous oil phase into an aqueous solution for use in biological applications. Typically, capsules are separated bycentrifugation, which can damage both the capsules and the encapsulated material. A passive method achieves separation without exposing the encapsulated material or the capsules to large mechanical forces, thereby preventing damage. To achieve passiveseparation, the use of a microfluidic device with opposing channel wa hydrophobicity was used to stabilize co-laminar flow of im of hydrophobicity is accomplished by defining one length of the channel with a hydrogel. The chosen hydrogel was poly (ethylene glycol) diacrylate, which adheres to the glass surface through the use of self-assembled monolayer of 3-(trichlorosilyl)-propyl methacrylate. Due to the difference in surface energy within the channel, the aqueous stream is stabilized near a hydrogel and the oil stream is stabilized near the thiolene based optical adhesive defining the opposing length of the channel. Passive separation with co-laminar flow has shown success in continuously separating calcium-alginatecapsules from an oil phase into an aqueous phase. In addition to successful formation and separation of calcium alginate capsules,encapsulation of Latex micro-beads and viable mammalian cells has been achieved. The viability of encapsulated mammalian cells was determined using a live/dead stain. The co-laminar flow device has also been demonstrated as a means of separating liquid-liquidemulsions.
Resumo:
Many industrial solids processes require the production of disperse particles. In industries such as food, personal care, and pharmaceuticals, particle formation is widely used to produce solid products or to separate substances in intermediate process steps. The most important characteristics known to impact the effectiveness of a solid product are purity, size, internal structure, and morphology. These characteristics are essential to maintain optimal operation of subsequent process steps and for obtaining the desired high quality product. This thesis aims to aid in the advancement of particle production technology by (1) investigating the use of a vibrating orifice aerosol generator (VOAG) for collecting data to predict particle attributes including morphology, size, and internal structure as a function of processing parameters such as solvent, solution concentration, air flow rate, and initial droplet size, as well as to (2) determine the extent to which uniform droplet evaporation can be a tool to achieve novel particle morphologies, controlled sizes, or internal structures (crystallinity and crystal form). Experimental results for succinic acid, L-serine, and L-glutamic acid suggest that particles of controlled characteristics can indeed be produced by this method. Analysis by scanning electron microscopy (SEM), nanoindentation, and X-ray diffraction (XRD) shows that various sizes, internal structures, and morphologies can be obtained using the VOAG. Furthermore, unique morphologies and unexpected internal structures were able to be achieved for succinic acid, providing an added benefit to particle formation by this method.