2 resultados para latex reclaim

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, I will argue that Canadian author Margaret Atwood uses fiscal and socially conservative dystopias to show how sex work and prostitution are choices that women would never have to make in a world with true gender equality. In these radically different worlds, women have no agency beyond their sexuality and no ability to express themselves as equals within either society. And while the structures of both societies, the society of The Handmaid’s Tale and that of both Oryx and Crake and The Year of the Flood, are inherently different, they both stem from modern conservative philosophies: for example, the country of Gilead in The Handmaid’s Tale holds Christian conservative beliefs on the role of religion in the state and the culturally designated roles of women. I define social conservatism as the idea that government organizations are used to pursue an agenda promoting traditional religious values such as “public morality” and opposing “immoralities” such as abortion, prostitution, and homosexuality. I define fiscal conservatism as an agenda promoting privatization of the market, deregulation and lower taxes. In this paper I argue that because these philosophies are incompatible with gender equality, they drive women to occupations such as sex work. Women find that they have no choices and sex work provides something to “trade.” For Offred, this “trading” is more limited, because she is a sex slave. For Oryx, this trading allows her to travel to the West, yet not before her childhood is marked by prostitution and pornography. Sex work allows for Ren to reclaim some agency over her life, yet she only chooses sex work because she is presented with few other options. All of these issues stem from the philosophies that define these dystopias.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microfluidic devices can be used for many applications, including the formation of well-controlled emulsions. In this study, the capability to continuously create monodisperse droplets in a microfluidic device was used to form calcium-alginate capsules.Calcium-alginate capsules have many potential uses, such as immunoisolation of cells and microencapsulation of active drug ingredients or bitter agents in food or beverage products. The gelation of calcium-alginate capsules is achieved by crosslinking sodiumalginate with calcium ions. Calcium ions dissociated from calcium carbonate due to diffusion of acetic acid from a sunflower oil phase into an aqueous droplet containing sodium-alginate and calcium carbonate. After gelation, the capsules were separated from the continuous oil phase into an aqueous solution for use in biological applications. Typically, capsules are separated bycentrifugation, which can damage both the capsules and the encapsulated material. A passive method achieves separation without exposing the encapsulated material or the capsules to large mechanical forces, thereby preventing damage. To achieve passiveseparation, the use of a microfluidic device with opposing channel wa hydrophobicity was used to stabilize co-laminar flow of im of hydrophobicity is accomplished by defining one length of the channel with a hydrogel. The chosen hydrogel was poly (ethylene glycol) diacrylate, which adheres to the glass surface through the use of self-assembled monolayer of 3-(trichlorosilyl)-propyl methacrylate. Due to the difference in surface energy within the channel, the aqueous stream is stabilized near a hydrogel and the oil stream is stabilized near the thiolene based optical adhesive defining the opposing length of the channel. Passive separation with co-laminar flow has shown success in continuously separating calcium-alginatecapsules from an oil phase into an aqueous phase. In addition to successful formation and separation of calcium alginate capsules,encapsulation of Latex micro-beads and viable mammalian cells has been achieved. The viability of encapsulated mammalian cells was determined using a live/dead stain. The co-laminar flow device has also been demonstrated as a means of separating liquid-liquidemulsions.