5 resultados para kappa shape indices

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the mechanical implications of shell shape differences between males and females of two North American turtle species: Chrysemys picta and Glyptemys insculpta. These species show patterns of sexual dimorphism that are common to many species of turtle. Females have wider and more highly domed shells, whereas males tend to have flatter, more streamlined shells. In addition, the males of many terrestrial species have concave plastra, most likely to accommodate the domed shells of the females while mating. The purpose of this study was to determine whether the known morphological differences in male and female turtle shells are also associated with differences in shell strength. Landmark coordinate data were collected from the shells of males and females of both species. These data were used to create digital models of each shell for finite-element (FE) analysis. FE models were generated by transforming a single base model of a turtle shell to match the shapes of each specimen examined in this study. All models were assigned the same material properties and restraints. Twelve load cases, each representing a predator’s bite at a different location on the carapace, were applied separately to the models. Subsequently, Von Mises stresses were extracted for each element of each model. Overall, the shells of females of both species exhibited significantly lower maximum and average stresses for a given load than those of their male counterparts. Male G. insculpta exhibited significant increases in stresses because of the concave shape of their plastra. We suggest that the mechanical implications of shell shape differences between males and females may have a large impact on many aspects of the biology of these turtle species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquatic species can experience different selective pressures on morphology in different flow regimes. Species inhabiting lotic regimes often adapt to these conditions by evolving low-drag (i.e., streamlined) morphologies that reduce the likelihood of dislodgment or displacement. However, hydrodynamic factors are not the only selective pressures influencing organismal morphology and shapes well suited to flow conditions may compromise performance in other roles. We investigated the possibility of morphological trade-offs in the turtle Pseudemys concinna. Individuals living in lotic environments have flatter, more streamlined shells than those living in lentic environments; however, this flatter shape may also make the shells less capable of resisting predator-induced loads. We tested the idea that ‘‘lotic’’ shell shapes are weaker than ‘‘lentic’’ shell shapes, concomitantly examining effects of sex. Geometric morphometric data were used to transform an existing finite element shell model into a series of models corresponding to the shapes of individual turtles. Models were assigned identical material properties and loaded under identical conditions, and the stresses produced by a series of eight loads were extracted to describe the strength of the shells. ‘‘Lotic’’ shell shapes produced significantly higher stresses than ‘‘lentic’’ shell shapes, indicating that the former is weaker than the latter. Females had significantly stronger shell shapes than males, although these differences were less consistent than differences between flow regimes. We conclude that, despite the potential for many-to-one mapping of shell shape onto strength, P. concinna experiences a trade-off in shell shape between hydrodynamic and mechanical performance. This trade-off may be evident in many other turtle species or any other aquatic species that also depend on a shell for defense. However, evolution of body size may provide an avenue of escape from this trade-off in some cases, as changes in size can drastically affect mechanical performance while having little effect on hydrodynamic performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a near-infrared (0.9-2.4 mu m) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth (approximate to 10-300 Myr). Our sample is composed of 48 low-resolution (R approximate to 100) spectra and 41 moderate-resolution spectra (R greater than or similar to 750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provides consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of similar to 10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, Ki, Nai, and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If you had perfect pitch and listened to a recording of the sounds a drum made when struck, could you determine the shape of the drum? This question is an example of an inverse problem; inverse problems arise in medical imaging, oil prospecting, spectroscopy, and many other fields. We’ll first discuss the analogous question in the simpler setting of plucking a string. Then we’ll tackle the problem for drums and see that there are some surprises. Finally, I will give a brief indication of how this problem relates to some of my recent research. The emphasis will be on the ideas rather than on the technical details, so there will be pretty pictures instead of equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a metric for assessing the commonality and differentiation of packaging-family planning with application to medical labels along with supporting background research and findings. Consumable products such as medications rely on the package or label to represent the contents. Package confusion has been widely recognized as a major problem for both over-the-counter and pharmacy-dispensed medications with potentially lethal consequences. It is critical to identify a medication as a member of a product family and differentiate its contributing elements based on visual features on the package or label to avoid consumer confusion and reduce dispensing errors. Indices that indicate degrees of commonality and differentiation of features in consumer products such as batteries, light bulbs, handles, etc for platforms have been shown to benefit development of engineered product families [6]. It is possible to take a similar approach for visual features in packaging such as typography, shape/form, imagery and color to benefit packaging-family development. This thesis establishes a commonality differentiation index for prominence of visual features on over-the-counter and pharmacy-dispensed medications based on occurrence, size, and location of features. It provides a quantitative measure to assist package designers in evaluating alternatives to satisfy strategic goals and improve safety. The index is demonstrated with several medications that have been identified by the Institute for Safe Medication Practice as commonly confused.