3 resultados para inhabit

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this article is to explore the various ways that superintendents have responded to accountability-based educational reform efforts such as No Child Left Behind, the factors that have influenced their responses, and the implications of these responses for current and future educational leaders. With respect to the first issue, empirical data from a number of nationai studies (T. E. Glass & Franceschini, 2007; Johnson, Arumi, & Ott, 2006; Johnstone, Dilkkers, & Luedeke, 2009; Stecher et al., 2008) make clear that while there have been a variety of responses from superintendents to accountability-based reform efforts, superintendents have mostly played a supportive role. Examining the situation more fully suggests that the driving factors behind superintendent support for accountability-based educational reform are complex and are often deeply embedded within the "DNA" of the role of superintendent. This article examines the structure of this DNA by looking at the factors that influence superintendents' views of accountability-based educational reform from historical, political, and institutional perspectives. This muitifaceted approach provides new insights into the complex relationship that exists between the structure of the role of superintendent and the agency of the individuals who inhabit that role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Species diversity itself may cause additional species diversity. According to recent findings, some species modify their environment in such a way that they facilitate the creation of new niches for other species to evolve to fill. Given the vast speciesdiversity of insects, the occurrence of such sequential radiation of species is likely common among herbivorous insects and the species that depend on them, many of them being insects as well. Herbivorous insects often have close associations with specific host plants and their preferences for mating and ovipositing on a specific host-plant species can reproductively isolate host-specific populations, facilitating speciation. Previous research by our laboratory has established that there are two distinct populations of thegall fly, Eurosta solidaginis (Tephritidae), which attack different species of goldenrods, Solidago altissima (Asteraceae) and S. gigantea. The gall fly’s host-associated differentiation is facilitating the divergence and potential speciation of twosubpopulations of the gall-boring beetle Mordellistena convicta (Mordellidae) by providing new resources (galls on stems of the galdenrods) for the gall-boring beetles. These beetles exist as two host-plant associated populations of inquilines that inhabit the galls induced by the gall fly. While our previous research has provided genetic and behavioral evidence for host-race formation, little is known about the role of their host plants in assortative mating and oviposition-site selection of the gall-boring beetles’ hostassociated populations. Volatile emissions from host plants can play a major role in assisting herbivores to locate their natal host plants and thus facilitate assortative mating and host-specific oviposition. The present study investigated the role of host-plant volatiles in host fidelity (mating on the host plant) and oviposition preference of M. convicta by measuring its behavioral responses to the host-plant volatile emissions using Y-tube olfactometers. In total, we tested behavioral responses of 615 beetles. Our resultsshow that M. convicta adults are attracted to their natal host galls (67% of S. altissima-emerging beetles and 70% of S. gigantea-emerging beetles) and avoid the alternate host galls (75% of S. altissima-emerging beetles and 66% of S. gigantea-emerging beetles),while showing no preference for, or avoidance of, ungalled plants from either species. This suggests that the gall beetles can orient to the volatile chemicals emitted by the galls and can potentially use them to identify suitable sites for mating and/or oviposition. Thus, host-associated mating and oviposition may play a role in the sequential speciation of the gall-boring beetle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gregarine apicomplexans are a diverse group of single-celled parasites that have feeding stages (trophozoites) and gamonts that generally inhabit the extracellular spaces of invertebrate hosts living in marine, freshwater, and terrestrial environments. Inferences about the evolutionary morphology of gregarine apicomplexans are being incrementally refined by molecular phylogenetic data, which suggest that several traits associated with the feeding cells of gregarines arose by convergent evolution. The study reported here supports these inferences by showing how molecular data reveals traits that are phylogenetically misleading within the context of comparative morphology alone. We examined the ultrastructure and molecular phylogenetic positions of two gregarine species isolated from the spaghetti worm Thelepus japonicus: Selenidium terebellae Ray 1930 and S. melongena n. sp. The ultrastructural traits of S. terebellae were very similar to other species of Selenidium sensu stricto, such as having vermiform trophozoites with an apical complex, few epicytic folds, and a dense array of microtubules underlying the trilayered pellicle. By contrast, S. melongena n. sp. lacked a comparably discrete assembly of subpellicular microtubules, instead employing a system of fibrils beneath the cell surface that supported a relatively dense array of helically arranged epicytic folds. Molecular phylogenetic analyses of small subunit rDNA sequences derived from single-cell PCR unexpectedly demonstrated that these two gregarines are close sister species. The ultrastructural differences between these two species were consistent with the fact that S. terebellae infects the inner lining of the host intestines, and S. melongena n. sp. primarily inhabits the coelom, infecting the outside wall of the host intestine. Altogether, these data demonstrate a compelling case of niche partitioning and associated morphological divergence in marine gregarine apicomplexans. (C) 2014 Elsevier GmbH. All rights reserved.