2 resultados para hyperbolic metric

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compliant mechanisms with evenly distributed stresses have better load-bearing ability and larger range of motion than mechanisms with compliance and stresses lumped at flexural hinges. In this paper, we present a metric to quantify how uniformly the strain energy of deformation and thus the stresses are distributed throughout the mechanism topology. The resulting metric is used to optimize cross-sections of conceptual compliant topologies leading to designs with maximal stress distribution. This optimization framework is demonstrated for both single-port mechanisms and single-input single-output mechanisms. It is observed that the optimized designs have lower stresses than their nonoptimized counterparts, which implies an ability for single-port mechanisms to store larger strain energy, and single-input single-output mechanisms to perform larger output work before failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1983, M. van den Berg made his Fundamental Gap Conjecture about the difference between the first two Dirichlet eigenvalues (the fundamental gap) of any convex domain in the Euclidean plane. Recently, progress has been made in the case where the domains are polygons and, in particular, triangles. We examine the conjecture for triangles in hyperbolic geometry, though we seek an for an upper bound for the fundamental gap rather than a lower bound.