6 resultados para hydrodynamic coefficient

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One observed vibration mode for Tainter gate skinplates involves the bending of the skinplate about a horizontal nodal line. This vibration mode can be approximated as a streamwise rotational vibration about the horizontal nodal line. Such a streamwise rotational vibration of a Tainter gate skinplate must push away water from the portion of the skinplate rotating into the reservoir and draw water toward the gate over that portion of the skinplate receding from the reservoir. The induced pressure is termed the push-and-draw pressure. In the present paper, this push-and-draw pressure is analyzed using the potential theory developed for dissipative wave radiation problems. In the initial analysis, the usual circular-arc skinplate is replaced by a vertical, flat, rigid weir plate so that theoretical calculations can be undertaken. The theoretical push-and-draw pressure is used in the derivation of the non-dimensional equation of motion of the flow-induced rotational vibrations. Non-dimensionalization of the equation of motion permits the identification of the dimensionless equivalent added mass and the wave radiation damping coefficients. Free vibration tests of a vertical, flat, rigid weir plate model, both in air and in water, were performed to measure the equivalent added mass and the wave radiation damping coefficients. Experimental results compared favorably with the theoretical predictions, thus validating the theoretical analysis of the equivalent added mass and wave radiation damping coefficients as a prediction tool for flow-induced vibrations. Subsequently, the equation of motion of an inclined circular-arc skinplate was developed by incorporating a pressure correction coefficient, which permits empirical adaptation of the results from the hydrodynamic pressure analysis of the vertical, flat, rigid weir plate. Results from in-water free vibration tests on a 1/31-scale skinplate model of the Folsom Dam Tainter gate are used to demonstrate the utility of the equivalent added mass coefficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a homogeneously driven granular fluid of hard spheres at intermediate volume fractions and focus on time-delayed correlation functions in the stationary state. Inelastic collisions are modeled by incomplete normal restitution, allowing for efficient simulations with an event-driven algorithm. The incoherent scattering function Fincoh(q,t ) is seen to follow time-density superposition with a relaxation time that increases significantly as the volume fraction increases. The statistics of particle displacements is approximately Gaussian. For the coherent scattering function S(q,ω), we compare our results to the predictions of generalized fluctuating hydrodynamics, which takes into account that temperature fluctuations decay either diffusively or with a finite relaxation rate, depending on wave number and inelasticity. For sufficiently small wave number q we observe sound waves in the coherent scattering function S(q,ω) and the longitudinal current correlation function Cl(q,ω). We determine the speed of sound and the transport coefficients and compare them to the results of kinetic theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquatic species can experience different selective pressures on morphology in different flow regimes. Species inhabiting lotic regimes often adapt to these conditions by evolving low-drag (i.e., streamlined) morphologies that reduce the likelihood of dislodgment or displacement. However, hydrodynamic factors are not the only selective pressures influencing organismal morphology and shapes well suited to flow conditions may compromise performance in other roles. We investigated the possibility of morphological trade-offs in the turtle Pseudemys concinna. Individuals living in lotic environments have flatter, more streamlined shells than those living in lentic environments; however, this flatter shape may also make the shells less capable of resisting predator-induced loads. We tested the idea that ‘‘lotic’’ shell shapes are weaker than ‘‘lentic’’ shell shapes, concomitantly examining effects of sex. Geometric morphometric data were used to transform an existing finite element shell model into a series of models corresponding to the shapes of individual turtles. Models were assigned identical material properties and loaded under identical conditions, and the stresses produced by a series of eight loads were extracted to describe the strength of the shells. ‘‘Lotic’’ shell shapes produced significantly higher stresses than ‘‘lentic’’ shell shapes, indicating that the former is weaker than the latter. Females had significantly stronger shell shapes than males, although these differences were less consistent than differences between flow regimes. We conclude that, despite the potential for many-to-one mapping of shell shape onto strength, P. concinna experiences a trade-off in shell shape between hydrodynamic and mechanical performance. This trade-off may be evident in many other turtle species or any other aquatic species that also depend on a shell for defense. However, evolution of body size may provide an avenue of escape from this trade-off in some cases, as changes in size can drastically affect mechanical performance while having little effect on hydrodynamic performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work described herein is aimed at understanding primary and secondary aggregation of bile salt micelles and how micelles can perform chiral recognition of binapthyl analytes. Previous work with cholate and deoxycholate using micellar electrokinetic chromatography (MEKC) and nuclear magnetic resonance (NMR) has provided insightinto cholate and deoxycholate micelle formation, especially with respect to the critical micelle concentration (CMC). Chiral separations of the model analyte, 1,1â??-binaphthyl-2,2â??-diyl hydrogen phosphate (BNDHP), via cholate (C) and deoxycholate (DC) mediated MEKC separataions previously have shown the DC CMC to be 7-10 mM andthe cholate CMC at 14 mM at ph 12. A second model analyte,1,1â??-binaphthol (BN), was also previously investigated to probe micellar structure, but the MEKC data for this analyte implied a higher CMC, which may be interpreted as secondary aggregation. Thiswork extends the investigation of bile salts to include pulsed field gradient spin echo (PFGSE) NMR experiments being used to gain information about the size and degree of polydispersity of cholate and deoxycholate micelles. Concentrations of cholate below 10mM show a large variation in effective radius likely due to the existence of transient preliminary aggregates. The onset of the primary micelle shows a dramatic increase in effective radius of the micelle in cholate and deoxycholate. In the region of expectedsecondary aggregation a gradual increase of effective radius was observed with cholate; deoxycholate showed a persistent aggregate size in the secondary micelle region that is modulated by the presence of an analyte molecule. Effective radii of cholate anddeoxycholate (individually) were compared with and without R- and S-BNDHP in order to observe the effective radius difference of micelles with and without analyte present. The presence of S-BNDHP consistently resulted in a larger effective aggregate radius incholate and deoxycholate, confirming previous data of the S-BNDHP interacting more with the micelle than R-BNDHP. In total, various NMR techniques, like diffusion NMR can be used to gain a greater understanding of the bile salt micellization process and chiral resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital signal processing (DSP) techniques for biological sequence analysis continue to grow in popularity due to the inherent digital nature of these sequences. DSP methods have demonstrated early success for detection of coding regions in a gene. Recently, these methods are being used to establish DNA gene similarity. We present the inter-coefficient difference (ICD) transformation, a novel extension of the discrete Fourier transformation, which can be applied to any DNA sequence. The ICD method is a mathematical, alignment-free DNA comparison method that generates a genetic signature for any DNA sequence that is used to generate relative measures of similarity among DNA sequences. We demonstrate our method on a set of insulin genes obtained from an evolutionarily wide range of species, and on a set of avian influenza viral sequences, which represents a set of highly similar sequences. We compare phylogenetic trees generated using our technique against trees generated using traditional alignment techniques for similarity and demonstrate that the ICD method produces a highly accurate tree without requiring an alignment prior to establishing sequence similarity.