3 resultados para human influence
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
For as far back as human history can be traced, mankind has questioned what it means to be human. One of the most common approaches throughout Western culture's intellectual tradition in attempts to answering this question has been to compare humans with or against other animals. I argue that it was not until Charles Darwin's publication of The Descent of Man and Selection in Relation to Sex (1871) that Western culture was forced to seriously consider human identity in relation to the human/ nonhuman primate line. Since no thinker prior to Charles Darwin had caused such an identity crisis in Western thought, this interdisciplinary analysis of the history of how the human/ nonhuman primate line has been understood focuses on the reciprocal relationship of popular culture and scientific representations from 1871 to the Human Genome Consortium in 2000. Focusing on the concept coined as the "Darwin-Müller debate," representations of the human/ nonhuman primate line are traced through themes of language, intelligence, and claims of variation throughout the popular texts: Descent of Man, The Jungle Books (1894), Tarzan of the Apes (1914), and Planet of the Apes (1963). Additional themes such as the nature versus nurture debate and other comparative phenotypic attributes commonly used for comparison between man and apes are also analyzed. Such popular culture representations are compared with related or influential scientific research during the respective time period of each text to shed light on the reciprocal nature of Western intellectual tradition, popular notions of the human/ nonhuman primate line, and the development of the field of primatology. Ultimately this thesis shows that the Darwin-Müller debate is indeterminable, and such a lack of resolution makes man uncomfortable. Man's unsettled response and desire for self-knowledge further facilitates a continued search for answers to human identity. As the Human Genome Project has led to the rise of new debates, and primate research has become less anthropocentric over time, the mysteries of man's future have become more concerning than the questions of our past. The human/ nonhuman primate line is reduced to a 1% difference, and new debates have begun to overshadow the Darwin-Müller debate. In conclusion, I argue that human identity is best represented through the metaphor of evolution: both have an unknown beginning, both have an indeterminable future with no definite end, and like a species under the influence of evolution, what it means to be human is a constant, indeterminable process of change.
Experimental Evaluation of the Influence of Human-Structure Interaction for Vibration Serviceability
Resumo:
The effects of human-structure interaction on the dynamic performance of occupied structures have long been observed. The inclusion of the effects of human-structure interaction is important to ensure that the dynamic response of a structure is not overestimated. Previous observations, both in service and in the laboratory, have yielded results indicating that the effects are dependent on the natural frequency of the structure, the posture of the occupants, and the mass ratio of the occupants to the structure. These results are noteworthy, but are limited in their application,because the data are sparse and are only pertinent to a specific set of characteristics identified in a given study. To examine these characteristics simultaneously and consistently, an experimental test structure was designed with variable properties to replicate a variety of configurations within a controlled setting focusing on the effects of passive occupants. Experimental modal analysis techniques were employed to both the empty and occupied conditions of the structure and the dynamic properties associated with each condition were compared. Results similar to previous investigations were observed, including both an increase and a decrease in natural frequency of the occupied structure with respect to the empty structure, as well as the identification of a second mode of vibration. The damping of the combined system was higher for all configurations. Overall, this study provides a broad data set representing a wide array of configurations. The experimental results of this study were used to assess current recommendations for the dynamic properties of a crowd to analytically predict the effects of human-structure interaction. The experimental results were used to select a set of properties for passive, standing occupants and develop a new model that can more accurately represent the behavior of the human-structure system as experimentally measured in this study.
Resumo:
Vibration serviceability is a widely recognized design criterion for assembly-type structures, such as stadiums, that are likely subjected to rhythmic human-induced excitation. Human-induced excitation of a structure occurs from the movement of the occupants such as walking, running, jumping, or dancing. Vibration serviceability is based on the level of comfort that people have with the vibrations of a structure. Current design guidance uses the natural frequency of the structure to assess vibration serviceability. However, a phenomenon known as human-structure interaction suggests that there is a dynamic interaction between the structure and passive occupants, altering the natural frequency of the system. Human-structure interaction is dependent on many factors, including the dynamic properties of the structure, posture of the occupants, and relative size of the crowd. It is unknown if the shift in natural frequency due to humanstructure interaction is significant enough to warrant consideration in the design process. This study explores the interface of both structural and crowd characteristics through experimental testing to determine if human-structure interaction should be considered because of its potential impact on serviceability assessment. An experimental test structure that represents the dynamic properties of a cantilevered stadium structure was designed and constructed. Experimental modal analysis was implemented to determine the dynamic properties of the empty test structure and when occupied with up to seven people arranged in different locations and postures. Comparisons of the dynamic properties were made between the empty and occupied testing configurations and analytical results from the use of a dynamic crowd model recommended from the Joint Working Group of Europe. Data trends lead to the development of a refined dynamic crowd model. This dynamic model can be used in conjunction with a finite element model of the test structure to estimate the dynamic influence due to human-structure interaction due to occupants standing with straight knees. In the future, the crowd model will be refined and can aid in assessing the dynamic properties of in-service stadium structures.