3 resultados para heme iron
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Lipoxygenases are a class of enzymes which consist of non-heme iron dioxygenases that are produced by fungi, plants, and mammals and catalyze the oxygenation of polyunsaturated fatty acid substrates to unsaturated fatty acid hydroperoxide products. The unsaturated fatty acid hydroperoxide products are stereo- and regiospecific. One such lipoxygenase, soybean lipoxygenase-1 (SBLO-1), catalyzes the conversion of linoleate to 13-hydroperoxy-9(Z),11(E)-octadecadienoate (13-HPOD) and a small amount of 9-hydroperoxy-10(E),12(Z)-octadecadienoate (9-HPOD). Although the structure of SBLO-1 is known and it is the most widely studied lipoxygenase, how it binds to substrate is still poorly understood. Two competing binding hypotheses that have been used to understand and explain the binding are the head first binding model and the tail first binding model. The head first binding model predicts linoleate binds with its polar carboxylate group in the binding pocket and the methyl terminus at the surface of the binding pocket. The tail first binding model predicts that linoleate binds with its methyl terminus end in the binding pocket and the polar carboxylate group at the surface of the binding pocket. Both binding models have been used in the explanation of previous work. In previous work the replacement of phenylalanine with valine has been performed to produce the phe557val mutant SBLO-1. The mutant SBLO-1 was then used in the enzymatic oxygenation of linoleate. With this mutant, the amount of 9-HPOD that is formed increases. This result has been interpreted using the head-first binding model in which the smaller valine residue allows linoleate to bind with the polar carboxylate group of linoleate interacting with arginine-707. The work presented in this thesis confirms the regiochemical results of the previous work and further tests the head-first binding model. If head-first binding occurs, the 9-HPOD is expected to have primarily S configuration. Utilizing chiral-phase HPLC, it was found that the 9-HPOD produced by the phe557val mutant SBLO-1 is primarily S, consistent with head-first binding. The head-first binding model was also tested using linoleyl dimethylamine (LDMA), which has been shown to be a good substrate for SBLO-1 at pH 7.0, where LDMA is thought to be positively charged. This model predicts that less of the 9-peroxide should be produced with this substrate. Through the use of gas chromatography/mass spectrometry, it was found that the conversion of LDMA by the phe557val mutant SBLO-1 resulted in the formation of a 46:54 mixture of the 13-peroxide:9-peroxide. The higher amount of 9-peroxide is the opposite of what is expected for the currently proposed model suggesting that the proposed model may not be entirely correct. The results thus far have been consistent with reverse binding but not with the proposed interaction of the polar end of the substrate with arginine-707.
Resumo:
Current understanding of the Iron Age polity of Phrygia in Central Anatolia is primarily based on excavations and survey in the region of the Phrygian capital of Gordion. In order to expand our knowledge of the Phrygian polity, we assess the scale and nature of Iron Age communities in the western (EskiAYehir) region of Phrygia. We address the challenge of interpreting ceramics derived from large-scale archaeological survey by utilizing Neutron Activation Analysis (NAA) of ceramics from 12 sites across the region collected by the EskiAYehir archaeological survey project as well as an excavated assemblage from Aar Hoyuk. While the uniformity in ceramic technology and styles suggest the region is part of the larger Phrygian community, NAA results reveal that (a) ceramic production was regionally highly localized with limited evidence of standardization during the Iron Age and (b) based on evidence of community interaction it is possible to establish a partial chronological sequence of development. These results have implications not only for understanding the internal dynamics within the Phrygian core but also for developing a methodology for comparing ancient polities using commensurate units of interacting communities. The present study is part of the larger Anatolian Iron Age Ceramics project (http://www.une.edu.au/a-ia).
Resumo:
Changes in resource use over time can provide insight into technological choice and the extent of long-term stability in cultural practices. In this paper we re-evaluate the evidence for a marked demographic shift at the inception of the Early Iron Age at Troy by applying a robust macroscale analysis of changing ceramic resource use over the Late Bronze and Iron Age. We use a combination of new and legacy analytical datasets (NAA and XRF), from excavated ceramics, to evaluate the potential compositional range of local resources (based on comparisons with sediments from within a 10 km site radius). Results show a clear distinction between sediment-defined local and non-local ceramic compositional groups. Two discrete local ceramic resources have been previously identified and we confirm a third local resource for a major class of EIA handmade wares and cooking pots. This third source appears to derive from a residual resource on the Troy peninsula (rather than adjacent alluvial valleys). The presence of a group of large and heavy pithoi among the non-local groups raises questions about their regional or maritime origin. (C) 2012 Elsevier Ltd. All rights reserved.