6 resultados para heavy ion reactions

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Doubly charged ion mass spectra of alkyl-substituted furans and pyrroles were obtained using a double-focusing magnetic mass spectrometer operated at 3.2 kV accelerating voltage. Molecular ions were the dominant species found in doubly charged spectra of lower molecular weight heterocydic compounds, whereas the spectra of the higher weight homologues were typified by abundant fragment ions from extensive decomposition. Measured doubly charged ionization and appearance energies ranged from 22.8 to 47.9 eV. Ionization energies were correlated with values calculated using self-consistent field–molecular orbital techniques. A multichannel diabatic curve-crossing model was developed to investigate the fundamental organic ion reactions responsible for development of doubly charged ion mass spectra. Probabilities for Landau–Zener type transitions between reactant and product curves were determined and used in the collision model to predict charge-transfer cross-sections, which compared favorably with experimental cross-sections obtained using time-of-flight techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Charge transfer reactivities of hydrocarbon ions have been measured with time-of-flight techniques, and results correlated with theoretical structures computed by self-consistent field molecular orbital methods. Recombination energies, ion structures, heats of formation, reaction energetics and relative charge transfer cross-sections are presented for molecular and fragment ions produced by electron bombardment ionization of CH4, C2H4, C2H6, C3H8 and C4H10 molecules. Even-electron bridged cations have low ion recombination energies and relatively low charge transfer cross-sections as compared with odd-electron hydrocarbon cations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charge-transfer cross sections have been obtained by using time-of-flight techniques, and results correlated with reaction energetics and theoretical structures computed by self-consistent field-molecular orbital methods. Ion recombination energies, structures, heats of formation, reaction energy defects, and 3.0-keV charge-transfer cross sections are presented for reactions of molecular and fragment ions produced by electron bombardment ionization of CH30CH, and CH$l molecules. Relationships between experimental cross sections and reaction energetics involving different ion structures are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron transfer cross sections have been measured for reactions of Ar2+ ions with Ar, N2, O2, CO2, CH4 and C2H6. Time-of-flight techniques have been used to measure both fast neutral Ar0 and fast Ar+ products from single- and double-electron transfer processes involving Ar2+ ions with 4.0 to 7.0 keV impact energies. Incident Ar2+ ions have produced by controlled electron impact ionisation of argon atoms. Reactions have been examined as a function of ionising electron energy and cross sections determined for ground state Ar2+(3P) ions. Charge transfer cross sections have been determined to be in the range of 3*10-16 cm2 for the systems examined. Double-electron transfer cross sections are the same order of magnitude as those measured for the corresponding single-electron transfer reactions. The state distribution of the reactant ion beam has been estimated and electron transfer cross sections obtained for single- and double-electron transfer reactions of metastable Ar2+ions. The magnitudes of electron transfer cross sections in individual systems are similar for both ground and metastable state Ar2+ reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross sections for charge transfer reactions of organic ions containing oxygen have been obtained using time-of-flight techniques. Charge transfer cross sections have been determined for reactions of 2.0 to 3.4 keV ions produced by electron impact ionization of oxygen containing molecules such as methanol, ethanal and ethanol. Experimental cross section magnitudes have been correlated with reaction energy defects computed from ion recombination energies and target ionization energies. Large cross sections are observed for reacting systems with small energy defects.