3 resultados para heat affected zone

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ASTM A529 carbon¿manganese steel angle specimens were joined by flash butt welding and the effects of varying process parameter settings on the resulting welds were investigated. The weld metal and heat affected zones were examined and tested using tensile testing, ultrasonic scanning, Rockwell hardness testing, optical microscopy, and scanning electron microscopy with energy dispersive spectroscopy in order to quantify the effect of process variables on weld quality. Statistical analysis of experimental tensile and ultrasonic scanning data highlighted the sensitivity of weld strength and the presence of weld zone inclusions and interfacial defects to the process factors of upset current, flashing time duration, and upset dimension. Subsequent microstructural analysis revealed various phases within the weld and heat affected zone, including acicular ferrite, Widmanstätten or side-plate ferrite, and grain boundary ferrite. Inspection of the fracture surfaces of multiple tensile specimens, with scanning electron microscopy, displayed evidence of brittle cleavage fracture within the weld zone for certain factor combinations. Test results also indicated that hardness was increased in the weld zone for all specimens, which can be attributed to the extensive deformation of the upset operation. The significance of weld process factor levels on microstructure, fracture characteristics, and weld zone strength was analyzed. The relationships between significant flash welding process variables and weld quality metrics as applied to ASTM A529-Grade 50 steel angle were formalized in empirical process models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New geochronologic, geochemical, sedimentologic, and compositional data from the central Wrangell volcanic belt (WVB) document basin development and volcanism linked to subduction of overthickened oceanic crust to the northern Pacific plate margin. The Frederika Formation and overlying Wrangell Lavas comprise >3 km of sedimentary and volcanic strata exposed in the Wrangell Mountains of south-central Alaska (United States). Measured stratigraphic sections and lithofacies analyses document lithofacies associations that reflect deposition in alluvial-fluvial-lacustrine environments routinely influenced by volcanic eruptions. Expansion of intrabasinal volcanic centers prompted progradation of vent-proximal volcanic aprons across basinal environments. Coal deposits, lacustrine strata, and vertical juxtaposition of basinal to proximal lithofacies indicate active basin subsidence that is attributable to heat flow associated with intrabasinal volcanic centers and extension along intrabasinal normal faults. The orientation of intrabasinal normal faults is consistent with transtensional deformation along the Totschunda-Fairweather fault system. Paleocurrents, compositional provenance, and detrital geochronologic ages link sediment accumulation to erosion of active intrabasinal volcanoes and to a lesser extent Mesozoic igneous sources. Geochemical compositions of interbedded lavas are dominantly calc-alkaline, range from basaltic andesite to rhyolite in composition, and share geochemical characteristics with Pliocene-Quaternary phases of the western WVB linked to subduction-related magmatism. The U/Pb ages of tuffs and Ar-40/Ar-39 ages of lavas indicate that basin development and volcanism commenced by 12.5-11.0 Ma and persisted until at least ca. 5.3 Ma. Eastern sections yield older ages (12.5-9.3 Ma) than western sections (9.6-8.3 Ma). Samples from two western sections yield even younger ages of 5.3 Ma. Integration of new and published stratigraphic, geochronologic, and geochemical data from the entire WVB permits a comprehensive interpretation of basin development and volcanism within a regional tectonic context. We propose a model in which diachronous volcanism and transtensional basin development reflect progressive insertion of a thickened oceanic crustal slab of the Yakutat microplate into the arcuate continental margin of southern Alaska coeval with reported changes in plate motions. Oblique northwestward subduction of a thickened oceanic crustal slab during Oligocene to Middle Miocene time produced transtensional basins and volcanism along the eastern edge of the slab along the Duke River fault in Canada and subduction-related volcanism along the northern edge of the slab near the Yukon-Alaska border. Volcanism and basin development migrated progressively northwestward into eastern Alaska during Middle Miocene through Holocene time, concomitant with a northwestward shift in plate convergence direction and subduction collision of progressively thicker crust against the syntaxial plate margin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineering students continue to develop and show misconceptions due to prior knowledge and experiences (Miller, Streveler, Olds, Chi, Nelson, & Geist, 2007). Misconceptions have been documented in students’ understanding of heat transfer(Krause, Decker, Niska, Alford, & Griffin, 2003) by concept inventories (e.g., Jacobi,Martin, Mitchell, & Newell, 2003; Nottis, Prince, Vigeant, Nelson, & Hartsock, 2009). Students’ conceptual understanding has also been shown to vary by grade point average (Nottis et al., 2009). Inquiry-based activities (Nottis, Prince, & Vigeant, 2010) haveshown some success over traditional instructional methods (Tasoglu & Bakac, 2010) in altering misconceptions. The purpose of the current study was to determine whether undergraduate engineering students’ understanding of heat transfer concepts significantly changed after instruction with eight inquiry-based activities (Prince & Felder, 2007) supplementing instruction and whether students’ self reported GPA and prior knowledge, as measured by completion of specific engineering courses, affected these changes. The Heat and Energy Concept Inventory (Prince, Vigeant, & Nottis, 2010) was used to assess conceptual understanding. It was found that conceptual understanding significantly increased from pre- to post-test. It was also found that GPA had an effect on conceptual understanding of heat transfer; significant differences were found in post-test scores onthe concept inventory between GPA groups. However, there were mixed results when courses previously taken were analyzed. Future research should strive to analyze how prior knowledge effects conceptual understanding and aim to reduce the limitations of the current study such as, sampling method and methods of measuring GPA and priorknowledge.