3 resultados para halo or neutron skin projectiles
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Background: UV exposure causes a wide range of skin damage including cutaneous melanoma. The mechanisms of cellular and molecular damage as well as erythemal and pigmentation responses to UV exposure have largely been studied in the White population. Methods: This study systematically investigates responses to UV exposure in the Native Hawaiian and Pacific Islanders (NHPI) and Asian populations living in Hawai’i (A/HI) as well as in Asians living in Maryland (A/MD). Results: Our analyses indicate that the NHPI population is less sensitive to UV exposure than the A/HI population. Comparisons between the two Asian groups suggest that, despite slightly but not statistically different baseline constitutive pigmentation (pre-UV exposure), the A/HI and A/MD had similar UV sensitivity, measured as minimal erythemal dose (MED). However, the A/MD population had higher levels of oxy-hemoglobin at doses of 2.0, 2.8 and 4.0 MED. Unexpectedly the A/MD subjects retained higher levels of pigmentation 2 weeks post UV exposure. Conclusion: This study provides insight into UV responses of the inhabitants of Hawai’i and shows that such responses are statistically significant for relatively small samples of Native Hawaiian and Pacific Islanders, and for Asians living in Hawai’i and Asians living in Maryland.
Resumo:
The present research examined the influences of the halo effect and the similar-tome effect on physical and sexual attractiveness for hiring decisions. It was hypothesized that the halo effect would cause applicants rated highly in physical and sexual attractiveness to receive higher ratings of hireability than unattractive applicants.However, if the similar-to-me effect is influential for levels of attractiveness in hiring situations, participants who rated themselves as less attractive should favor unattractive applicants. The results did not show an interaction between participant self-ratings and ratings of hireability, indicating the similar-to-me effect does not apply to physical or sexual attractiveness. There was a main effect of sexual attractiveness of the applicant forhireability, showing support for the halo effect. This effect was only found for White applicants, potentially due to in-group bias and out-group homogeneity.
Resumo:
Definitive diagnosis of the bat disease white-nose syndrome (WNS) requires histologic analysis to identify the cutaneous erosions caused by the fungal pathogen Pseudogymnoascus [formerly Geomyces] destructans (Pd). Gross visual inspection does not distinguish bats with or without WNS, and no nonlethal, on-site, preliminary screening methods are available for WNS in bats. We demonstrate that long-wave ultraviolet (UV) light (wavelength 366-385 nm) elicits a distinct orange yellow fluorescence in bat-wing membranes (skin) that corresponds directly with the fungal cupping erosions in histologic sections of skin that are the current gold standard for diagnosis of WNS. Between March 2009 and April 2012, wing membranes from 168 North American bat carcasses submitted to the US Geological Survey National Wildlife Health Center were examined with the use of both UV light and histology. Comparison of these techniques showed that 98.8% of the bats with foci of orange yellow wing fluorescence (n=80) were WNS-positive based on histologic diagnosis; bat wings that did not fluoresce under UV light (n=88) were all histologically negative for WNS lesions. Punch biopsy samples as small as 3 mm taken from areas of wing with UV fluorescence were effective for identifying lesions diagnostic for WNS by histopathology. In a nonlethal biopsy-based study of 62 bats sampled (4-mm diameter) in hibernacula of the Czech Republic during 2012, 95.5% of fluorescent (n=22) and 100% of nonfluorescent (n=40) wing samples were confirmed by histopathology to be WNS positive and negative, respectively. This evidence supports use of long-wave UV light as a nonlethal and field-applicable method to screen bats for lesions indicative of WNS. Further, UV fluorescence can be used to guide targeted, nonlethal biopsy sampling for follow-up molecular testing, fungal culture analysis, and histologic confirmation of WNS.