3 resultados para event detection algorithm

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this paper is to discuss various aspects of implementing a specific intrusion-detection scheme on a micro-computer system using fixed-point arithmetic. The proposed scheme is suitable for detecting intruder stimuli which are in the form of transient signals. It consists of two stages: an adaptive digital predictor and an adaptive threshold detection algorithm. Experimental results involving data acquired via field experiments are also included.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study a homogeneously driven granular fluid of hard spheres at intermediate volume fractions and focus on time-delayed correlation functions in the stationary state. Inelastic collisions are modeled by incomplete normal restitution, allowing for efficient simulations with an event-driven algorithm. The incoherent scattering function Fincoh(q,t ) is seen to follow time-density superposition with a relaxation time that increases significantly as the volume fraction increases. The statistics of particle displacements is approximately Gaussian. For the coherent scattering function S(q,ω), we compare our results to the predictions of generalized fluctuating hydrodynamics, which takes into account that temperature fluctuations decay either diffusively or with a finite relaxation rate, depending on wave number and inelasticity. For sufficiently small wave number q we observe sound waves in the coherent scattering function S(q,ω) and the longitudinal current correlation function Cl(q,ω). We determine the speed of sound and the transport coefficients and compare them to the results of kinetic theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Large-scale simulations and analytical theory have been combined to obtain the nonequilibrium velocity distribution, f(v), of randomly accelerated particles in suspension. The simulations are based on an event-driven algorithm, generalized to include friction. They reveal strongly anomalous but largely universal distributions, which are independent of volume fraction and collision processes, which suggests a one-particle model should capture all the essential features. We have formulated this one-particle model and solved it analytically in the limit of strong damping, where we find that f (v) decays as 1/v for multiple decades, eventually crossing over to a Gaussian decay for the largest velocities. Many particle simulations and numerical solution of the one-particle model agree for all values of the damping.