4 resultados para environmental context
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
This study examined the meaning-making and psychosocial processes of five female legacy students at Bucknell University, each of whom having had at least one parent graduate from the institution. With a research philosophy, design, and methodology rooted in qualitative inquiry and phenomenology, inductive data analysis led to three primary categories that underscored legacy identity development. The first, Paradox of Influence and Identity, revealed through six themes nuanced experiences of separation-individuation. Second, Teaching and Learning, comprised of five themes, illuminated the impact of family — and of Bucknell parent alumni in particular — on their children’s internal working models. Lastly, Bucknell — the Environmental Contextand the five themes grouped therein highlighted the contributions of University community members, and of the campus culture and climate itself, to the co-construction of psychosocial formation. A tentative outline of grounded theory was offered, which explored categorical relationships; Paradox of Influence and Identity emerged as thedominant phenomenon, informing and being reinforced by the data of Teaching and Learning and Bucknell — the Environmental Context. Provisional intervention strategies for student affairs practice, in the contexts of academics, residential life, and career development, were discussed. Further, triangulated research is needed to substantiate and evolve the findings and theoretical model of this thesis.
Resumo:
This paper summarizes a two-country model that solves for optimal tax rates to achieve efficiency in an economy with international trade in used consumer electronics. If only the developed nation can tax the disposal of e-waste, then the global Pareto Optimum can be obtained by either imposing an import tariff on used consumer electronics or subsidizing the return of e-waste for disposal in the developed country. The global Pareto Optimum can also be obtained by reducing the disposal tax in the developed country to a level below the external marginal cost of disposal should no other policy option be available.
Resumo:
Modifications and upgrades to the hydraulic flume facility in the Environmental Fluid Mechanics and Hydraulics Laboratory (EFM&H) at Bucknell University are described. These changes enable small-scale testing of model marine hydrokinetic(MHK) devices. The design of the experimental platform provides a controlled environment for testing of model MHK devices to determine their effect on localsubstrate. Specifically, the effects being studied are scour and erosion around a cylindrical support structure and deposition of sediment downstream from the device.
Resumo:
Atmospheric aerosols affect both global and regional climate by altering the radiative balance of the atmosphere and acting as cloud condensation nuclei. Despite an increased focus on the research of atmospheric aerosols due to concerns about global climate change, current methods to observe the morphology of aerosols and to measure their hygroscopic properties are limited in various ways by experimental procedure. The primary objectives of this thesis were to use atomic force microscopy to determine the morphology of atmospherically relevant aerosols and to investigate theutility of environmental atomic force microscopy for imaging aerosols as they respond to changes in relative humidity. Traditional aerosol generation and collection techniques were used in conjunction with atomic force microscopy to image commonorganic and inorganic aerosols. In addition, environmental AFM was used to image aerosols at a variety of relative humidity values. The results of this research demonstrated the utility of atomic force microscopy for measuring the morphology of aerosols. In addition, the utility of environmental AFM for measuring the hygroscopic properties of aerosols was demonstrated. Further research in this area will lead to an increased understanding of the role oforganic and inorganic aerosols in the atmosphere, allowing for the effects of anthropogenic aerosol emissions to be quantified and for more accurate climate models to be developed.