2 resultados para emerging stock markets of Europe
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
White-nose syndrome (WNS) has caused recent catastrophic declines among multiple species of bats in eastern North America1, 2. The disease’s name derives from a visually apparent white growth of the newly discovered fungus Geomyces destructans on the skin (including the muzzle) of hibernating bats1, 3. Colonization of skin by this fungus is associated with characteristic cutaneous lesions that are the only consistent pathological finding related to WNS4. However, the role of G. destructans in WNS remains controversial because evidence to implicate the fungus as the primary cause of this disease is lacking. The debate is fuelled, in part, by the assumption that fungal infections in mammals are most commonly associated with immune system dysfunction5, 6, 7. Additionally, the recent discovery that G. destructans commonly colonizes the skin of bats of Europe, where no unusual bat mortality events have been reported8, 9, 10, has generated further speculation that the fungus is an opportunistic pathogen and that other unidentified factors are the primary cause of WNS11, 12. Here we demonstrate that exposure of healthy little brown bats (Myotis lucifugus) to pure cultures of G. destructans causes WNS. Live G. destructans was subsequently cultured from diseased bats, successfully fulfilling established criteria for the determination ofG. destructans as a primary pathogen13. We also confirmed that WNS can be transmitted from infected bats to healthy bats through direct contact. Our results provide the first direct evidence that G. destructans is the causal agent of WNS and that the recent emergence of WNS in North America may represent translocation of the fungus to a region with a naive population of animals8. Demonstration of causality is an instrumental step in elucidating the pathogenesis14 and epidemiology15 of WNS and in guiding management actions to preserve bat populations against the novel threat posed by this devastating infectious disease.
Resumo:
Vibration serviceability is a widely recognized design criterion for assembly-type structures, such as stadiums, that are likely subjected to rhythmic human-induced excitation. Human-induced excitation of a structure occurs from the movement of the occupants such as walking, running, jumping, or dancing. Vibration serviceability is based on the level of comfort that people have with the vibrations of a structure. Current design guidance uses the natural frequency of the structure to assess vibration serviceability. However, a phenomenon known as human-structure interaction suggests that there is a dynamic interaction between the structure and passive occupants, altering the natural frequency of the system. Human-structure interaction is dependent on many factors, including the dynamic properties of the structure, posture of the occupants, and relative size of the crowd. It is unknown if the shift in natural frequency due to humanstructure interaction is significant enough to warrant consideration in the design process. This study explores the interface of both structural and crowd characteristics through experimental testing to determine if human-structure interaction should be considered because of its potential impact on serviceability assessment. An experimental test structure that represents the dynamic properties of a cantilevered stadium structure was designed and constructed. Experimental modal analysis was implemented to determine the dynamic properties of the empty test structure and when occupied with up to seven people arranged in different locations and postures. Comparisons of the dynamic properties were made between the empty and occupied testing configurations and analytical results from the use of a dynamic crowd model recommended from the Joint Working Group of Europe. Data trends lead to the development of a refined dynamic crowd model. This dynamic model can be used in conjunction with a finite element model of the test structure to estimate the dynamic influence due to human-structure interaction due to occupants standing with straight knees. In the future, the crowd model will be refined and can aid in assessing the dynamic properties of in-service stadium structures.