5 resultados para elliptic functions elliptic integrals weierstrass function hamiltonian
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
We study a homogeneously driven granular fluid of hard spheres at intermediate volume fractions and focus on time-delayed correlation functions in the stationary state. Inelastic collisions are modeled by incomplete normal restitution, allowing for efficient simulations with an event-driven algorithm. The incoherent scattering function Fincoh(q,t ) is seen to follow time-density superposition with a relaxation time that increases significantly as the volume fraction increases. The statistics of particle displacements is approximately Gaussian. For the coherent scattering function S(q,ω), we compare our results to the predictions of generalized fluctuating hydrodynamics, which takes into account that temperature fluctuations decay either diffusively or with a finite relaxation rate, depending on wave number and inelasticity. For sufficiently small wave number q we observe sound waves in the coherent scattering function S(q,ω) and the longitudinal current correlation function Cl(q,ω). We determine the speed of sound and the transport coefficients and compare them to the results of kinetic theory.
Resumo:
Abstract This paper studies the structure of inner functions under the operation of composition, and in particular the notions or primeness and semiprimeness. Results proved include the density of prime finite Blaschke products in the set of finite Blaschke products, the semiprimeness of finite products of thin Blaschke products and their approximability by prime Blaschke products. An example of a nonsemiprime Blaschke product that is a Frostman Blaschke product is also provided.
Resumo:
To every partially ordered set (poset), one can associate a generating function, known as the P-partition generating function. We find necessary conditions and sufficient conditions for two posets to have the same P-partition generating function. We define the notion of a jump sequence for a labeled poset and show that having equal jumpsequences is a necessary condition for generating function equality. We also develop multiple ways of modifying posets that preserve generating function equality. Finally, we are able to give a complete classification of equalities among partially ordered setswith exactly two linear extensions.
Resumo:
The assessment of executive functions is an area of study that has seen considerable development in recent years. Despite much research examining the validity of various measures of executive functions from both a direct and indirect format, little evidence exists in the extant literature evaluating the correspondence between these types of measures. The current study examined the extent of correspondence, comprising concurrent validity, between the Delis-Kaplan Executive Function System (D-KEFS) and the Behavior Rating Inventory of Executive Function ¿ Self-Report Version (BRIEF-SR). Participants included 30 undergraduate and high school students 18 years of age. Results indicated mixed evidence of concurrent validity between the two measures of executive functions. The findings obtained suggest both expected significant, negative correlation as well as lack of expected correlation between the measures. Suggestions for future research in the assessment of executive functions are discussed.
Resumo:
Reiner, Shaw and van Willigenburg showed that if two skew Schur functions sA and sB are equal, then the skew shapes $A$ and $B$ must have the same "row overlap partitions." Here we show that these row overlap equalities are also implied by a much weaker condition than Schur equality: that sA and sB have the same support when expanded in the fundamental quasisymmetric basis F. Surprisingly, there is significant evidence supporting a conjecture that the converse is also true. In fact, we work in terms of inequalities, showing that if the F-support of sA contains that of sB, then the row overlap partitions of A are dominated by those of B, and again conjecture that the converse also holds. Our evidence in favor of these conjectures includes their consistency with a complete determination of all F-support containment relations for F-multiplicity-free skew Schur functions. We conclude with a consideration of how some other quasisymmetric bases fit into our framework.