3 resultados para dynamic testing
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
While beneficially decreasing the necessary incision size, arthroscopic hip surgery increases the surgical complexity due to loss of joint visibility. To ease such difficulty, a computer-aided mechanical navigation system was developed to present the location of the surgical tool relative to the patient¿s hip joint. A preliminary study reduced the position error of the tracking linkage with limited static testing trials. In this study, a correction method, including a rotational correction factor and a length correction function, was developed through more in-depth static testing. The developed correction method was then applied to additional static and dynamic testing trials to evaluate its effectiveness. For static testing, the position error decreased from an average of 0.384 inches to 0.153 inches, with an error reduction of 60.5%. Three parameters utilized to quantify error reduction of dynamic testing did not show consistent results. The vertex coordinates achieved 29.4% of error reduction, yet with large variation in the upper vertex. The triangular area error was reduced by 5.37%, however inconsistent among all five dynamic trials. Error of vertex angles increased, indicating a shape torsion using the developed correction method. While the established correction method effectively and consistently reduced position error in static testing, it did not present consistent results in dynamic trials. More dynamic paramters should be explored to quantify error reduction of dynamic testing, and more in-depth dynamic testing methodology should be conducted to further improve the accuracy of the computer-aided nagivation system.
Resumo:
As lightweight and slender structural elements are more frequently used in the design, large scale structures become more flexible and susceptible to excessive vibrations. To ensure the functionality of the structure, dynamic properties of the occupied structure need to be estimated during the design phase. Traditional analysis method models occupants simply as an additional mass; however, research has shown that human occupants could be better modeled as an additional degree-of- freedom. In the United Kingdom, active and passive crowd models are proposed by the Joint Working Group as a result of a series of analytical and experimental research. It is expected that the crowd models would yield a more accurate estimation to the dynamic response of the occupied structure. However, experimental testing recently conducted through a graduate student project at Bucknell University indicated that the proposed passive crowd model might be inaccurate in representing the impact on the structure from the occupants. The objective of this study is to provide an assessment of the validity of the crowd models proposed by JWG through comparing the dynamic properties obtained from experimental testing data and analytical modeling results. The experimental data used in this study was collected by Firman in 2010. The analytical results were obtained by performing a time-history analysis on a finite element model of the occupied structure. The crowd models were created based on the recommendations from the JWG combined with the physical properties of the occupants during the experimental study. During this study, SAP2000 was used to create the finite element models and to implement the analysis; Matlab and ME¿scope were used to obtain the dynamic properties of the structure through processing the time-history analysis results from SAP2000. The result of this study indicates that the active crowd model could quite accurately represent the impact on the structure from occupants standing with bent knees while the passive crowd model could not properly simulate the dynamic response of the structure when occupants were standing straight or sitting on the structure. Future work related to this study involves improving the passive crowd model and evaluating the crowd models with full-scale structure models and operating data.
Resumo:
Stress corrosion cracking susceptibility was investigated for an ultra-fine grained (UFG) AI-7.5Mg alloy and a conventional 5083 H111 alloy in natural seawater using slow strain rate testing (SSRT) at very slow strain rates between 1E(-5) s(-1), 1E(-6) s(-1) and 1E(-7) s(-1). The UFG Al-7.5Mg alloy was produced by cryomilling, while the 5083 H111 alloy is considered as a wrought manufactured product. The response of tensile properties to strain rate was analyzed and compared. Negative strain rate sensitivity was observed for both materials in terms of the elongation to failure. However, the UFG alloy displayed strain rate sensitivity in relation to strength while the conventional alloy was relatively strain rate insensitive. The mechanical behavior of the conventional 5083 alloy was attributed to dynamic strain aging (DSA) and delayed pit propagation while the performance of the UFG alloy was related to a diffusion-mediated stress relaxation mechanism that successfully delayed crack initiation events, counteracted by exfoliation and pitting which enhanced crack initiation. (C) 2014 Elsevier B.V. All rights reserved.