2 resultados para conversion of TOC and COD
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
A pilot-scale study was completed to determine the feasibility of high-solids anaerobic digestion (HSAD) of a mixture of food and landscape wastes at a university in central Pennsylvania (USA). HSAD was stable at low loadings (2g COD/L-day), but developed inhibitory ammonia concentrations at high loadings (15g COD/L-day). At low loadings, methane yields were 232L CH4/kg COD fed and 229L CH4/kg VS fed, and at high loadings yields were 211L CH4/kg COD fed and 272L CH4/kg VS fed. Based on characterization and biodegradability studies, food waste appears to be a good candidate for HSAD at low organic loading rates; however, the development of ammonia inhibition at high loading rates suggests that the C:N ratio is too low for use as a single substrate. The relatively low biodegradability of landscape waste as reported herein made it an unsuitable substrate to increase the C:N ratio. Codigestion of food waste with a substrate high in bioavailable carbon is recommended to increase the C:N ratio sufficiently to allow HSAD at loading rates of 15g COD/L-day. Copyright 2014 Elsevier Ltd. All rights reserved.
Polymerization of Styrene and Cyclization to Macrocyclic Polystyrene in a One-Pot, Two-Step Sequence
Resumo:
Dibrominated polystyrene (BrPStBr) was produced by atom transfer radical polymerization (ATRP) at 80 degrees C, using the bifunctional initiator benzal bromide to afford the telechelic precursor. The ATRP reaction was stopped around 40% monomer conversion and directly converted into an radical trap-assisted atom transfer radical coupling (RTA-ATRC) reaction by lowering the temperature to 50 degrees C, and adding the radical trap 2-methyl-2-nitrosopropane (MNP) along with additional catalyst, reducing agent, and ligand to match ATRC-type reaction conditions. In an attempt to induce intramolecular coupling, rather than solely intermolecular coupling and elongation, the total reaction volume was increased by the addition of varying amounts of THF. Cyclization, along with intermolecular coupling and elongation, occurred in all cases, with the extent of ring closure a function of the total reaction volume. The cyclic portion of the coupled product was found to have a (G) value around 0.8 by GPC analysis, consistent with the reduction in hydrodynamic volume of a cyclic polymer compared to its linear analog. Analysis of the sequence by H-1 NMR confirmed that propagation was suppressed nearly completely during the RTA-ATRC phase, with percent monomer conversion remaining constant after the ATRP phase. (C) 2013 Elsevier Ltd. All rights reserved.