5 resultados para conjecture
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
A conjecture by Harder shows a surprising congruence between the coefficients of “classical” modular forms and the Hecke eigenvalues of corresponding Siegel modular forms, contigent upon “large primes” dividing the critical values of the given classical modular form. Harder’s Conjecture has already been verified for one-dimensional spaces of classical and Siegel modular forms (along with some two-dimensional cases), and for primes p 37. We verify the conjecture for higher-dimensional spaces, and up to a comparable prime p.
Resumo:
Let M^{2n} be a symplectic toric manifold with a fixed T^n-action and with a toric K\"ahler metric g. Abreu asked whether the spectrum of the Laplace operator $\Delta_g$ on $\mathcal{C}^\infty(M)$ determines the moment polytope of M, and hence by Delzant's theorem determines M up to symplectomorphism. We report on some progress made on an equivariant version of this conjecture. If the moment polygon of M^4 is generic and does not have too many pairs of parallel sides, the so-called equivariant spectrum of M and the spectrum of its associated real manifold M_R determine its polygon, up to translation and a small number of choices. For M of arbitrary even dimension and with integer cohomology class, the equivariant spectrum of the Laplacian acting on sections of a naturally associated line bundle determines the moment polytope of M.
Resumo:
In 1983, M. van den Berg made his Fundamental Gap Conjecture about the difference between the first two Dirichlet eigenvalues (the fundamental gap) of any convex domain in the Euclidean plane. Recently, progress has been made in the case where the domains are polygons and, in particular, triangles. We examine the conjecture for triangles in hyperbolic geometry, though we seek an for an upper bound for the fundamental gap rather than a lower bound.
Resumo:
Reiner, Shaw and van Willigenburg showed that if two skew Schur functions sA and sB are equal, then the skew shapes $A$ and $B$ must have the same "row overlap partitions." Here we show that these row overlap equalities are also implied by a much weaker condition than Schur equality: that sA and sB have the same support when expanded in the fundamental quasisymmetric basis F. Surprisingly, there is significant evidence supporting a conjecture that the converse is also true. In fact, we work in terms of inequalities, showing that if the F-support of sA contains that of sB, then the row overlap partitions of A are dominated by those of B, and again conjecture that the converse also holds. Our evidence in favor of these conjectures includes their consistency with a complete determination of all F-support containment relations for F-multiplicity-free skew Schur functions. We conclude with a consideration of how some other quasisymmetric bases fit into our framework.