1 resultado para combinatorial protocol in multiple linear regressions
em Bucknell University Digital Commons - Pensilvania - USA
Filtro por publicador
- Aberdeen University (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Aston University Research Archive (32)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (38)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (93)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (9)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (94)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (39)
- Centro Hospitalar do Porto (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (29)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (18)
- Digital Knowledge Repository of Central Drug Research Institute (5)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (22)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (8)
- Duke University (4)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (2)
- Instituto Politécnico do Porto, Portugal (29)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (24)
- Open Access Repository of Indian Theses (1)
- Publishing Network for Geoscientific & Environmental Data (3)
- QSpace: Queen's University - Canada (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (17)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (10)
- Repositório da Produção Científica e Intelectual da Unicamp (15)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (84)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (2)
- Scielo España (2)
- Scielo Saúde Pública - SP (56)
- Scielo Uruguai (1)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (10)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Algarve (1)
- Universidade do Minho (2)
- Universidade dos Açores - Portugal (5)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universidade Metodista de São Paulo (6)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (77)
- Université de Montréal, Canada (19)
- University of Connecticut - USA (1)
- University of Michigan (2)
- University of Queensland eSpace - Australia (54)
- University of Washington (5)
Resumo:
Recent optimizations of NMR spectroscopy have focused their attention on innovations in new hardware, such as novel probes and higher field strengths. Only recently has the potential to enhance the sensitivity of NMR through data acquisition strategies been investigated. This thesis has focused on the practice of enhancing the signal-to-noise ratio (SNR) of NMR using non-uniform sampling (NUS). After first establishing the concept and exact theory of compounding sensitivity enhancements in multiple non-uniformly sampled indirect dimensions, a new result was derived that NUS enhances both SNR and resolution at any given signal evolution time. In contrast, uniform sampling alternately optimizes SNR (t < 1.26T2) or resolution (t~3T2), each at the expense of the other. Experiments were designed and conducted on a plant natural product to explore this behavior of NUS in which the SNR and resolution continue to improve as acquisition time increases. Possible absolute sensitivity improvements of 1.5 and 1.9 are possible in each indirect dimension for matched and 2x biased exponentially decaying sampling densities, respectively, at an acquisition time of ¿T2. Recommendations for breaking into the linear regime of maximum entropy (MaxEnt) are proposed. Furthermore, examination into a novel sinusoidal sampling density resulted in improved line shapes in MaxEnt reconstructions of NUS data and comparable enhancement to a matched exponential sampling density. The Absolute Sample Sensitivity derived and demonstrated here for NUS holds great promise in expanding the adoption of non-uniform sampling.