4 resultados para charge pump
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Charge-transfer cross sections have been obtained by using time-of-flight techniques, and results correlated with reaction energetics and theoretical structures computed by self-consistent field-molecular orbital methods. Ion recombination energies, structures, heats of formation, reaction energy defects, and 3.0-keV charge-transfer cross sections are presented for reactions of molecular and fragment ions produced by electron bombardment ionization of CH30CH, and CH$l molecules. Relationships between experimental cross sections and reaction energetics involving different ion structures are discussed.
Resumo:
Charge transfer reactivities of hydrocarbon ions have been measured with time-of-flight techniques, and results correlated with theoretical structures computed by self-consistent field molecular orbital methods. Recombination energies, ion structures, heats of formation, reaction energetics and relative charge transfer cross-sections are presented for molecular and fragment ions produced by electron bombardment ionization of CH4, C2H4, C2H6, C3H8 and C4H10 molecules. Even-electron bridged cations have low ion recombination energies and relatively low charge transfer cross-sections as compared with odd-electron hydrocarbon cations.
Resumo:
Cross sections for charge transfer reactions of organic ions containing oxygen have been obtained using time-of-flight techniques. Charge transfer cross sections have been determined for reactions of 2.0 to 3.4 keV ions produced by electron impact ionization of oxygen containing molecules such as methanol, ethanal and ethanol. Experimental cross section magnitudes have been correlated with reaction energy defects computed from ion recombination energies and target ionization energies. Large cross sections are observed for reacting systems with small energy defects.
Resumo:
A prototype vortex-driven air lift pump was developed and experimentally evaluated. It was designed to be easily manufactured and scalable for arbitrary riser diameters. The model tested fit in a 2 inch diameter riser with six air injection nozzles through which airwas injected helically around the perimeter of the riser at an angle of 70º from pure tangential injection. The pump was intended to transport both water and sediment over a large range of submergence ratios. A test apparatus was designed to be able to simulate deep water or oceanic environments. The resulting test setup had a finite reservoir; over the course of a test, the submergence ratio varied from 0.48 to 0.39. For air injection pressures ranging from 10 to 60 psig and for air flow rates of 6 to 15 scfm, the induced water discharge flow rates varied only slightly, due to the limited range of available submergence ratios. The anticipated simulation of deep water environment, with a corresponding equivalent increase in thesubmergence ratio, proved unattainable. The pump prototype successfully transported both water and sediment (sand). Thepercent volume yield of the sediment was in an acceptable range. The pump design has been subsequently used successfully in a 4 inch configuration in a follow-on project. A computer program was written in Matlab to simulate the pump characteristics. The program output water pressures at the location of air injection which were physicallycompatible with the experimental data.