2 resultados para boost inverter

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Content Addressable Memory (CAM) is a special type of Complementary Metal-Oxide-Semiconductor (CMOS) storage element that allows for a parallel search operation on a memory stack in addition to the read and write operations yielded by a conventional SRAM storage array. In practice, it is often desirable to be able to store a “don’t care” state for faster searching operation. However, commercially available CAM chips are forced to accomplish this functionality by having to include two binary memory storage elements per CAM cell,which is a waste of precious area and power resources. This research presents a novel CAM circuit that achieves the “don’t care” functionality with a single ternary memory storage element. Using the recent development of multiple-voltage-threshold (MVT) CMOS transistors, the functionality of the proposed circuit is validated and characteristics for performance, power consumption, noise immunity, and silicon area are presented. This workpresents the following contributions to the field of CAM and ternary-valued logic:• We present a novel Simple Ternary Inverter (STI) transistor geometry scheme for achieving ternary-valued functionality in existing SOI-CMOS 0.18µm processes.• We present a novel Ternary Content Addressable Memory based on Three-Valued Logic (3CAM) as a single-storage-element CAM cell with “don’t care” functionality.• We explore the application of macro partitioning schemes to our proposed 3CAM array to observe the benefits and tradeoffs of architecture design in the context of power, delay, and area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Model-based calibration of steady-state engine operation is commonly performed with highly parameterized empirical models that are accurate but not very robust, particularly when predicting highly nonlinear responses such as diesel smoke emissions. To address this problem, and to boost the accuracy of more robust non-parametric methods to the same level, GT-Power was used to transform the empirical model input space into multiple input spaces that simplified the input-output relationship and improved the accuracy and robustness of smoke predictions made by three commonly used empirical modeling methods: Multivariate Regression, Neural Networks and the k-Nearest Neighbor method. The availability of multiple input spaces allowed the development of two committee techniques: a 'Simple Committee' technique that used averaged predictions from a set of 10 pre-selected input spaces chosen by the training data and the "Minimum Variance Committee" technique where the input spaces for each prediction were chosen on the basis of disagreement between the three modeling methods. This latter technique equalized the performance of the three modeling methods. The successively increasing improvements resulting from the use of a single best transformed input space (Best Combination Technique), Simple Committee Technique and Minimum Variance Committee Technique were verified with hypothesis testing. The transformed input spaces were also shown to improve outlier detection and to improve k-Nearest Neighbor performance when predicting dynamic emissions with steady-state training data. An unexpected finding was that the benefits of input space transformation were unaffected by changes in the hardware or the calibration of the underlying GT-Power model.