12 resultados para auditory cues
em Bucknell University Digital Commons - Pensilvania - USA
When that tune runs through your head: A PET investigation of auditory imagery for familiar melodies
Resumo:
The present study used positron emission tomography (PET) to examine the cerebral activity pattern associated with auditory imagery forfamiliar tunes. Subjects either imagined the continuation of nonverbaltunes cued by their first few notes, listened to a short sequence of notesas a control task, or listened and then reimagined that short sequence. Subtraction of the activation in the control task from that in the real-tune imagery task revealed primarily right-sided activation in frontal and superior temporal regions, plus supplementary motor area(SMA). Isolating retrieval of the real tunes by subtracting activation in the reimagine task from that in the real-tune imagery task revealedactivation primarily in right frontal areas and right superior temporal gyrus. Subtraction of activation in the control condition from that in the reimagine condition, intended to capture imagery of unfamiliarsequences, revealed activation in SMA, plus some left frontal regions. We conclude that areas of right auditory association cortex, together with right and left frontal cortices, are implicated in imagery for familiartunes, in accord with previous behavioral, lesion and PET data. Retrieval from musical semantic memory is mediated by structures in the right frontal lobe, in contrast to results from previous studies implicating left frontal areas for all semantic retrieval. The SMA seems to be involved specifically in image generation, implicating a motor code in this process.
When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies
Resumo:
The present study used positron emission tomography (PET) to examine the cerebral activity pattern associated with auditory imagery for familiar tunes. Subjects either imagined the continuation of nonverbal tunes cued by their first few notes, listened to a short sequence of notes as a control task, or listened and then reimagined that short sequence. Subtraction of the activation in the control task from that in the real-tune imagery task revealed primarily right-sided activation in frontal and superior temporal regions, plus supplementary motor area (SMA). Isolating retrieval of the real tunes by subtracting activation in the reimagine task from that in the real-tune imagery task revealed activation primarily in right frontal areas and right superior temporal gyrus. Subtraction of activation in the control condition from that in the reimagine condition, intended to capture imagery of unfamiliar sequences, revealed activation in SMA, plus some left frontal regions. We conclude that areas of right auditory association cortex, together with right and left frontal cortices, are implicated in imagery for familiar tunes, in accord with previous behavioral, lesion and PET data. Retrieval from musical semantic memory is mediated by structures in the right frontal lobe, in contrast to results from previous studies implicating left frontal areas for all semantic retrieval. The SMA seems to be involved specifically in image generation, implicating a motor code in this process.
Resumo:
Four experiments examined how people operate on memory representations of familiar songs. The tasks were similar to those used in studies of visual imagery. In one task, subjects saw a one word lyric from a song and then saw a second lyric; then they had to say if the second lyric was from the same song as the first. In a second task, subjects mentally compared pitches of notes corresponding to song lyrics. In both tasks, reaction time increased as a function of the distance in beats between the two lyrics in the actual song, and in some conditions reaction time increased with the starting beat of the earlier lyric. Imagery instructions modified the main results somewhat in the first task, but not in the second, much harder task. The results suggest that song representations have temporal-like characteristics. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Resumo:
1. Herbivorous insects often have close associations with specific host plants, and their preferences for mating and ovipositing on a specific host-plant species can reproductively isolate populations, facilitating ecological speciation. Volatile emissions from host plants can play a major role in assisting herbivores to locate their natal host plants and thus facilitate assortative mating and host-specific oviposition. 2. The present study investigated the role of host-plant volatiles in host fidelity and oviposition preference of the gall-boring, inquiline beetle, Mordellistena convicta LeConte (Coleoptera: Mordellidae), using Y-tube olfactometers. Previous studies suggest that the gall-boring beetle is undergoing sequential host-associated divergence by utilising the resources that are created by the diverging populations of the gall fly, Eurosta solidaginis Fitch (Diptera: Tephritidae), which induces galls on the stems of goldenrods including Solidago altissima L. (Asteraceae) and Solidago gigantea Ait. 3. Our results show that M. convicta adults are attracted to galls on their natal host plant, avoid the alternate host galls, and do not respond to volatile emissions from their host-plant stems. 4. These findings suggest that the gall-boring beetles can orient to the volatile chemicals from host galls, and that beetles can use them to identify suitable sites for mating and/or oviposition. Host-associated mating and oviposition likely play a role in the sequential radiation of the gall-boring beetle.
Resumo:
1. Herbivorous insects often have close associations with specific host plants, and their preferences for mating and ovipositing on a specific host-plant species can reproductively isolate populations, facilitating ecological speciation. Volatile emissions from host plants can play a major role in assisting herbivores to locate their natal host plants and thus facilitate assortative mating and host-specific oviposition. 2. The present study investigated the role of host-plant volatiles in host fidelity and oviposition preference of the gall-boring, inquiline beetle, Mordellistena convicta LeConte (Coleoptera: Mordellidae), using Y-tube olfactometers. Previous studies suggest that the gall-boring beetle is undergoing sequential host-associated divergence by utilising the resources that are created by the diverging populations of the gall fly, Eurosta solidaginis Fitch (Diptera: Tephritidae), which induces galls on the stems of goldenrods including Solidago altissima L. (Asteraceae) and Solidago gigantea Ait. 3. Our results show that M. convicta adults are attracted to galls on their natal host plant, avoid the alternate host galls, and do not respond to volatile emissions from their host-plant stems. 4. These findings suggest that the gall-boring beetles can orient to the volatile chemicals from host galls, and that beetles can use them to identify suitable sites for mating and/or oviposition. Host-associated mating and oviposition likely play a role in the sequential radiation of the gall-boring beetle.
Resumo:
Most people intuitively understand what it means to “hear a tune in your head.” Converging evidence now indicates that auditory cortical areas can be recruited even in the absence of sound and that this corresponds to the phenomenological experience of imagining music. We discuss these findings as well as some methodological challenges. We also consider the role of core versus belt areas in musical imagery, the relation between auditory and motor systems during imagery of music performance, and practical implications of this research.
Resumo:
Auditory imagery is more than just mental “replaying” of tunes in one’s head. I will review several studies that capture characteristics of complex and active imagery tasks, using both behavioral and neuroscience approaches. I use behavioral methods to capture people’s ability to make emotion judgments about both heard and imagined music in real time. My neuroimaging studies look at the neural correlates of encoding an imagined melody, anticipating an upcoming tune, and also imagining tunes backwards. Several studies show voxel-by-voxel correlates of neural activity with self-report of imagery vividness. These studies speak to the ways in which musical imagery allows us not just to remember music, but also how we use those memories to judge temporally changing aspects of the musical experience.
Resumo:
The vocal imitation of pitch by singing requires one to plan laryngeal movements on the basis of anticipated target pitch events. This process may rely on auditory imagery, which has been shown to activate motor planning areas. As such, we hypothesized that poor-pitch singing, although not typically associated with deficient pitch perception, may be associated with deficient auditory imagery. Participants vocally imitated simple pitch sequences by singing, discriminated pitch pairs on the basis of pitch height, and completed an auditory imagery self-report questionnaire (the Bucknell Auditory Imagery Scale). The percentage of trials participants sung in tune correlated significantly with self-reports of vividness for auditory imagery, although not with the ability to control auditory imagery. Pitch discrimination was not predicted by auditory imagery scores. The results thus support a link between auditory imagery and vocal imitation.
Resumo:
Species diversity itself may cause additional species diversity. According to recent findings, some species modify their environment in such a way that they facilitate the creation of new niches for other species to evolve to fill. Given the vast speciesdiversity of insects, the occurrence of such sequential radiation of species is likely common among herbivorous insects and the species that depend on them, many of them being insects as well. Herbivorous insects often have close associations with specific host plants and their preferences for mating and ovipositing on a specific host-plant species can reproductively isolate host-specific populations, facilitating speciation. Previous research by our laboratory has established that there are two distinct populations of thegall fly, Eurosta solidaginis (Tephritidae), which attack different species of goldenrods, Solidago altissima (Asteraceae) and S. gigantea. The gall fly’s host-associated differentiation is facilitating the divergence and potential speciation of twosubpopulations of the gall-boring beetle Mordellistena convicta (Mordellidae) by providing new resources (galls on stems of the galdenrods) for the gall-boring beetles. These beetles exist as two host-plant associated populations of inquilines that inhabit the galls induced by the gall fly. While our previous research has provided genetic and behavioral evidence for host-race formation, little is known about the role of their host plants in assortative mating and oviposition-site selection of the gall-boring beetles’ hostassociated populations. Volatile emissions from host plants can play a major role in assisting herbivores to locate their natal host plants and thus facilitate assortative mating and host-specific oviposition. The present study investigated the role of host-plant volatiles in host fidelity (mating on the host plant) and oviposition preference of M. convicta by measuring its behavioral responses to the host-plant volatile emissions using Y-tube olfactometers. In total, we tested behavioral responses of 615 beetles. Our resultsshow that M. convicta adults are attracted to their natal host galls (67% of S. altissima-emerging beetles and 70% of S. gigantea-emerging beetles) and avoid the alternate host galls (75% of S. altissima-emerging beetles and 66% of S. gigantea-emerging beetles),while showing no preference for, or avoidance of, ungalled plants from either species. This suggests that the gall beetles can orient to the volatile chemicals emitted by the galls and can potentially use them to identify suitable sites for mating and/or oviposition. Thus, host-associated mating and oviposition may play a role in the sequential speciation of the gall-boring beetle.
Resumo:
Capuchin monkeys, Cebus sp., utilize a wide array of gestural displays in the wild, including facial displays such as lip-smacking and bare-teeth displays. In captivity, they have been shown to respond to the head orientation of humans, show sensitivity to human attentional states, as well as follow human gazes behind barriers. In this study, I investigated whether tufted capuchin monkeys (Cebus apella) would attend to and utilize the gestural cues of a conspecific to obtain a hidden reward. Two capuchins faced each other in separate compartments of an apparatus with an open field in between. The open field contained two cups with holes on one side such that only one monkey, a so-called cuing monkey, could see the reward inside one of the cups. I then moved the cups toward the other signal-receiving monkey and assessed whether it would utilize untrained cues provided by the cuing monkey to select the cup containing the reward. Two of four female capuchin monkeys learned to select the cup containing the reward significantly more often than chance. Neither of these two monkeys performed over chance spontaneously, however, and the other two monkeys never performed above chance despite many blocks of trials. Successful choices by two monkeys to obtain hidden rewards provided experimental evidence that capuchin monkeys attend to and utilize the gestural cues of conspecifics.
Resumo:
Speech is typically a multimodal phenomenon, yet few studies have focused on the exclusive contributions of visual cues to language acquisition. To address this gap, we investigated whether visual prosodic information can facilitate speech segmentation. Previous research has demonstrated that language learners can use lexical stress and pitch cues to segment speech and that learners can extract this information from talking faces. Thus, we created an artificial speech stream that contained minimal segmentation cues and paired it with two synchronous facial displays in which visual prosody was either informative or uninformative for identifying word boundaries. Across three familiarisation conditions (audio stream alone, facial streams alone, and paired audiovisual), learning occurred only when the facial displays were informative to word boundaries, suggesting that facial cues can help learners solve the early challenges of language acquisition.