5 resultados para attitude formation and change

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Creatinine levels in blood serum are typically used to assess renal function. Clinical determination of creatinine is often based on the Jaffe reaction, in which creatinine in the serum reacts with sodium picrate, resulting in a spectrophotometrically quantifiable product. Previous work from our lab has introduced an electrophoretically mediated initiation of this reaction, in which nanoliter plugs of individual reagent solutions can be added to the capillary and then mixed and reacted. Following electrophoretic separation of the product from excess reactant(s), the product can be directly determined on column. This work aims to gain a detailed understanding of the in-capillary reagent mixing dynamics, in-line reaction yield, and product degradation during electrophoresis, with an overall goal of improving assay sensitivity. One set of experiments focuses on maximizing product formation through manipulation of various conditions such as pH, voltage applied, and timing of the applied voltage, in addition to manipulations in the identity, concentration, and pH of the background electrolyte. Through this work, it was determined that dramatic changes in local voltage fields within the various reagent zones lead to ineffective reagent overlapping. Use of the software simulation program Simul 5 enabled visualization of the reaction dynamics within the capillary, specifically the wide variance between the electric field intensities within the creatinine and picrate zones. Because of this simulation work, the experimental method was modified to increase the ionic strength of the creatinine reagent zone to lower the local voltage field, thus producing more predictable and effective overlap conditions for the reagents and allowing the formation of more Jaffe product. As second set of experiments focuses on controlling the post-reaction product degradation. In that vein, we have systematically explored the importance of the identity, concentration, and pH of the background electrolyte on the post-reaction degradation rate of the product. Although prior work with borate background electrolytes indicated that product degradation was probably a function of the ionic strength of the background electrolyte, this work with a glycine background electrolyte demonstrates that degradation is in fact not a function of ionic strength of the background electrolyte. As the concentration and pH of the glycine background increased, the rate of degradation of product did not change dramatically, whereas in borate-buffered systems, the rate of Jaffe product degradation increased linearly with background electrolyte concentration above 100.0 mM borate. Similarly, increasing pH of the glycine background electrolyte did not result in a corresponding increase in product degradation, as it had with the borate background electrolyte. Other general trends that were observed include: increasing background electrolyte concentration increases peak efficiency and higher pH favors product formation; thus, it appears that use of a background electrolyte other than borate, such as glycine, the rate of degradation of the Jaffe product can be slowed, increasing the sensitivity of this in-line assay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microfluidic devices can be used for many applications, including the formation of well-controlled emulsions. In this study, the capability to continuously create monodisperse droplets in a microfluidic device was used to form calcium-alginate capsules.Calcium-alginate capsules have many potential uses, such as immunoisolation of cells and microencapsulation of active drug ingredients or bitter agents in food or beverage products. The gelation of calcium-alginate capsules is achieved by crosslinking sodiumalginate with calcium ions. Calcium ions dissociated from calcium carbonate due to diffusion of acetic acid from a sunflower oil phase into an aqueous droplet containing sodium-alginate and calcium carbonate. After gelation, the capsules were separated from the continuous oil phase into an aqueous solution for use in biological applications. Typically, capsules are separated bycentrifugation, which can damage both the capsules and the encapsulated material. A passive method achieves separation without exposing the encapsulated material or the capsules to large mechanical forces, thereby preventing damage. To achieve passiveseparation, the use of a microfluidic device with opposing channel wa hydrophobicity was used to stabilize co-laminar flow of im of hydrophobicity is accomplished by defining one length of the channel with a hydrogel. The chosen hydrogel was poly (ethylene glycol) diacrylate, which adheres to the glass surface through the use of self-assembled monolayer of 3-(trichlorosilyl)-propyl methacrylate. Due to the difference in surface energy within the channel, the aqueous stream is stabilized near a hydrogel and the oil stream is stabilized near the thiolene based optical adhesive defining the opposing length of the channel. Passive separation with co-laminar flow has shown success in continuously separating calcium-alginatecapsules from an oil phase into an aqueous phase. In addition to successful formation and separation of calcium alginate capsules,encapsulation of Latex micro-beads and viable mammalian cells has been achieved. The viability of encapsulated mammalian cells was determined using a live/dead stain. The co-laminar flow device has also been demonstrated as a means of separating liquid-liquidemulsions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional liquid liquid extraction (LLE) methods require large volumes of fluids to achieve the desired mass transfer of a solute, which is unsuitable for systems dealing with a low volume or high value product. An alternative to these methods is to scale down the process. Millifluidic devices share many of the benefits of microfluidic systems, including low fluid volumes, increased interfacial area-to-volume ratio, and predictability. A robust millifluidic device was created from acrylic, glass, and aluminum. The channel is lined with a hydrogel cured in the bottom half of the device channel. This hydrogel stabilizes co-current laminar flow of immiscible organic and aqueous phases. Mass transfer of the solute occurs across the interface of these contacting phases. Using a y-junction, an aqueous emulsion is created in an organic phase. The emulsion travels through a length of tubing and then enters the co-current laminar flow device, where the emulsion is broken and each phase can be collected separately. The inclusion of this emulsion formation and separation increases the contact area between the organic and aqueous phases, therefore increasing the area over which mass transfer can occur. Using this design, 95% extraction efficiency was obtained, where 100% is represented by equilibrium. By continuing to explore this LLE process, the process can be optimized and with better understanding may be more accurately modeled. This system has the potential to scale up to the industrial level and provide the efficient extraction required with low fluid volumes and a well-behaved system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydraulic fracturing of the Marcellus Formation creates a byproduct known as frac water. Five frac water samples were collected in Bradford County, PA. Inorganic chemical analysis, field parameters analysis, alkalinity titrations, total dissolved solids(TDS), total suspended solids (TSS), biological oxygen demand (BOD), and chemical oxygen demand (COD) were conducted on each sample to characterize frac water. A database of frac water chemistry results from across the state of Pennsylvania from multiple sources was compiled in order to provide the public and research communitywith an accurate characterization of frac water. Four geochemical models were created to model the reactions between frac water and the Marcellus Formation, Purcell Limestone, and the oil field brines presumed present in the formations. The average concentrations of chloride and TDS in the five frac water samples were 1.1 �± 0.5 x 105 mg/L (5.5X average seawater) and 140,000 mg/L (4X average seawater). BOD values for frac water immediately upon flow back were over 10X greater than the BOD of typical wastewater, but decreased into the range of typical wastewater after a short period of time. The COD of frac water decreases dramatically with an increase in elapsed time from flow back, but remain considerably higher than typicalwastewater. Different alkalinity calculation methods produced a range of alkalinity values for frac water: this result is most likely due to high concentrations of aliphatic acid anions present in the samples. Laboratory analyses indicate that the frac watercomposition is quite variable depending on the companies from which the water was collected, the geology of the local area, and number of fracturing jobs in which the frac water was used, but will require more treatment than typical wastewater regardless of theprecise composition of each sample. The geochemical models created suggest that the presence of organic complexes in an oil field brine and Marcellus Formation aid in the dissolution of ions such as bariumand strontium into the solution. Although equilibration reactions between the Marcellus Formation and the slickwater account for some of the final frac water composition, the predominant control of frac water composition appears to be the ratio of the mixture between the oil field brine and slickwater. The high concentration of barium in the frac water is likely due to the abundance of barite nodules in the Purcell Limestone, and the lack of sulfate in the frac water samples is due to the reducing, anoxic conditions in the earth's subsurface that allow for the degassing of H2S(g).