5 resultados para amphiphilic copolymers, block copolymers, statistical copolymers, inverse emulsions, micelles
em Bucknell University Digital Commons - Pensilvania - USA
Selective Formation of Diblock Copolymers Using Radical Trap-Assisted Atom Transfer Radical Coupling
Resumo:
Polystyrene (PSt) radicals and poly(methyl acrylate) (PMA) radicals, derived from their monobrominated precursors prepared by atom transfer radical polymerization (ATRP), were formed in the presence of the radical trap 2-methyl-2-nitrosopropane (MNP), selectively forming PSt-PMA diblock copolymers with an alkoxyamine at the junction between the block segments. This radical trap-assisted, atom transfer radical coupling (RTA-ATRC) was performed in a single pot at low temperature (35 °C), while analogous traditional ATRC reactions at this temperature, which lacked the radical trap, resulted in no observed coupling and the PStBr and PMABr precursors were simply recovered. Selective formation of the diblock under RTA-ATRC conditions is consistent with the PStBr and PMABr having substantially different KATRP values, with PSt radicals initially being formed and trapped by the MNP and the PMA radicals being trapped by the in situ-formed nitroxide end-capped PSt. The midchain alkoxyamine functionality was confirmed by thermolysis of the diblock copolymer, resulting in recovery of the PSt segment and degradation of the PMA block at the relatively high temperatures (125 °C) required for thermal cleavage. A PSt-PMA diblock formed by chain extenstion ATRP using PStBr as the macroinitiator (thus lacking the alkoxyamine between the PSt-PMA segements) was inert to thermolysis. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3619–3626
Selective Formation of Diblock Copolymers Using Radical Trap-Assisted Atom Transfer Radical Coupling
Resumo:
Polystyrene (PSt) radicals and poly(methyl acrylate) (PMA) radicals, derived from their monobrominated precursors prepared by atom transfer radical polymerization (ATRP), were formed in the presence of the radical trap 2-methyl-2-nitrosopropane (MNP), selectively forming PSt-PMA diblock copolymers with an alkoxyamine at the junction between the block segments. This radical trap-assisted, atom transfer radical coupling (RTA-ATRC) was performed in a single pot at low temperature (35 degrees C), while analogous traditional ATRC reactions at this temperature, which lacked the radical trap, resulted in no observed coupling and the PStBr and PMABr precursors were simply recovered. Selective formation of the diblock under RTA-ATRC conditions is consistent with the PStBr and PMABr having substantially different K-ATRP values, with PSt radicals initially being formed and trapped by the MNP and the PMA radicals being trapped by the in situ-formed nitroxide end-capped PSt. The midchain alkoxyamine functionality was confirmed by thermolysis of the diblock copolymer, resulting in recovery of the PSt segment and degradation of the PMA block at the relatively high temperatures (125 degrees C) required for thermal cleavage. A PSt-PMA diblock formed by chain extenstion ATRP using PStBr as the macroinitiator (thus lacking the alkoxyamine between the PSt-PMA segements) was inert to thermolysis. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3619-3626
Resumo:
Monobrominated diblock copolymers composed of poly(styrene) (PSt), poly(methylacrylate) (PMA), or poly(methyl methacrylate) (PMMA) were synthesized by consecutive atom transfer radical polymerizations (ATRP). The brominated diblocks were utilized in atom transfer radical coupling (ATRC) and radical trap-assisted ATRC (RTA-ATRC) reactions to form ABA type triblock copolymers. Once PMMA-PStBr and PSt-PMABrBr were produced by ATRP, the synthes of PSt-PMA-PSt and PMMA-PSt- PMMA by ATRC and also by RTA-ATRC were attempted. The coupling methods were compared and it was found that RTA-ATRC succeeded in synthesizing PSt-PMA-PSt where ATRC could not, and that RTA-ATRC improved coupling over ATRC for PMMAPSt- PMMA. Incorporation of the radical trap 2-methyl-2-nitrosopropane (MNP) midchain allowed for simple thermal cleavage of the triblock to confirm the RTA-ATRC pathway occurred in preference over the head to head radical coupling pathway of ATRC. Triblocks made by ATRC did not cleave under our conditions, as no MNP was present and thus no labile C-O bond was incorporated. The RTA-ATRC pathway allowed for lower catalyst amounts (2 molar equivalents of copper(I)bromide and 2 molar equivalents of copper metal) and a high degree of coupling at lower temperatures (40°C). The RTA-ATRC improved upon ATRC because of its ability to generate a persistent radical and proceed by first order kinetics with respect to the chain end radical.
Resumo:
The blending of common polymers allows for the rapid and facile synthesis of new materials with highly tunable properties at a fraction of the costs of new monomer development and synthesis. Most blends of polymers, however, are completely immiscible and separate into distinct phases with minimal phase interaction, severelydegrading the performance of the material. Cross-phase interactions and property enhancement can be achieved with these blends through reactive processing or compatibilizer addition. A new class of blend compatibilization relies on the mechanochemical reactions between polymer chains via solid-state, high energy processing. Two contrasting mechanochemical processing techniques are explored in this thesis: cryogenic milling and solid-state shear pulverization (SSSP). Cryogenic milling is a batch process where a milling rod rapidly impacts the blend sample while submerged within a bath of liquid nitrogen. In contrast, SSSP is a continuous process where blend components are subjected to high shear and compressive forces while progressing down a chilled twin-screw barrel. In the cryogenic milling study, through the application of a synthesized labeledpolymer, in situ formation of copolymers was observed for the first time. The microstructures of polystyrene/high-density polyethylene (PS/HDPE) blends fabricated via cryomilling followed by intimate melt-state mixing and static annealing were found to be morphologically stable over time. PS/HDPE blends fabricated via SSSP also showed compatibilization by way of ideal blend morphology through growth mechanisms with slightly different behavior compared to the cryomilled blends. The new Bucknell University SSSP instrument was carefully analyzed and optimized to produce compatibilized polymer blends through a full-factorial experiment. Finally, blends of varying levels of compatibilization were subjected to common material tests to determine alternative means of measuring and quantifying compatibilization,
Resumo:
Polymers with mid-chain alkoxyamine functionality were synthesized by activating monohalogenated polymers in the presence of nitroso or nitrone radical traps. The resulting polymers were either polystyrene (PSt) homopolymers with a mid-chain alkoxyamine or PSt-poly(methyl acrylate) (PMA) diblock copolymers with an alkoxyamine unit at the junction between the segments. Monohalogenated polymers where synthesized by atom transfer radical polymerization (ATRP) and were then reacted to form polymer radicals in the presence of a radical trap, nitrone or nitroso. When only polystyrene radicals were reacted with the radical trap a dimer was formed with an alkoxyamine functionality in the center of the polymer chain. This functionality allowed the polymer chain to be cleaved in order to visualize the extent of the alkoxyamine functionality incorporation into the polymer chains. It was found that near quantitative alkoxyamine mid-chain functionality could be achieved by activating the PStBr in the presence of 10 equivalents of nitrone, 5 equivalents of copper bromide, and 2 equivalents of copper metal. Further reducing the amount of copper metal led to incomplete coupling, while increasing the equivalents beyond 2 generated polymer dimers with less than quantitative mid-chain functionality. Monochlorinated polystyrene (PStCl) precursors gave much poorer coupling results compared to reactions with PStBr, which is consistent with the stronger C-Cl bond resisting activation and the formation of the polystyryl radicals. When poly (methyl acrylate) (PMABr) is reacted with PStBr in the presence of a nitroso group at reduced temperatures (30 oC) block copolymers were selectively formed with an alkoxyamine functionality in the center. This was done by first activating the PSt-Br to form a polymer radical that would react with the radical trap to form a persistent radical on the oxygen. The PMA-Br, once activated, reacted with the radical on the oxygen to form the block copolymer. To test the amount of functionality incorporated, a coupling reaction was performed with no nitroso present, and found that no reaction occurred. This showed that the radical trap is essential for the coupling to occur, and cleavage of the diblock indicated that the alkoxyamine functionality was indeed incorporated into the diblock.