4 resultados para affect-based trust

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Multiple Affect Adjective Check List (MAACL) has been found to have five first-order factors representing Anxiety, Depression, Hostility, Positive Affect, and Sensation Seeking and two second-order factors representing Positive Affect and Sensation Seeking (PASS) and Dysphoria. The present study examines whether these first- and second-order conceptions of affect (based on R-technique factor analysis) can also account for patterns of intraindividual variability in affect (based on P-technique factor analysis) in eight elderly women. Although the hypothesized five-factor model of affect was not testable in all of the present P-technique datasets, the results were consistent with this interindividual model of affect. Moreover, evidence of second-order (PASS and Dysphoria) and third-order (generalized distress) factors was found in one data set. Sufficient convergence in findings between the present P-technique research and prior R-technique research suggests that the MAACL is robust in describing both inter- and intraindividual components of affect in elderly women.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: Previous research from the Cash and Counseling Demonstration and Evaluation (CCDE) in Arkansas, New Jersey, and Florida suggests that giving consumers control over their personal care greatly increases their satisfaction and improves their outlook on life. Still, some argue that consumerdirected care may not be appropriate for consumers with intellectual disabilities or mental health diagnoses. This study examined how Cash and Counseling— a new option allowing consumers to manage an individualized budget equivalent to what agencies would have spent on their care—changes the way consumers with mental health diagnoses meet their personal care needs and how that affects their wellbeing. Design and Methods: Using the Arkansas CCDE baseline and the 9-month follow-up data for individuals in the treatment and control groups, we compared and contrasted the experience of elderly consumers with and without mental health diagnoses utilizing logit regression. Results: After examining several outcome measures, including satisfaction with care arrangements and the paid caregiver’s reliability and schedule, unmet needs, and satisfaction with the relationship with paid caregivers, this study found evidence that, from the perspective of consumers, the Cash and Counseling program works well for participants with mental health diagnoses. Implications: Considering the growing need for long-term-care services and the limited resources available, a consumer-directed option makes sense, and it can be a valuable alternative for persons with mental health needs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensive research conducted over the past several decades has indicated that semipermeable membrane behavior (i.e., the ability of a porous medium to restrict the passage of solutes) may have a significant influence on solute migration through a wide variety of clay-rich soils, including both natural clay formations (aquitards, aquicludes) and engineered clay barriers (e.g., landfill liners and vertical cutoff walls). Restricted solute migration through clay membranes generally has been described using coupled flux formulations based on nonequilibrium (irreversible) thermodynamics. However, these formulations have differed depending on the assumptions inherent in the theoretical development, resulting in some confusion regarding the applicability of the formulations. Accordingly, a critical review of coupled flux formulations for liquid, current, and solutes through a semipermeable clay membrane under isothermal conditions is undertaken with the goals of explicitly resolving differences among the formulations and illustrating the significance of the differences from theoretical and practical perspectives. Formulations based on single-solute systems (i.e., uncharged solute), single-salt systems, and general systems containing multiple cations or anions are presented. Also, expressions relating the phenomenological coefficients in the coupled flux equations to relevant soil properties (e.g., hydraulic conductivity and effective diffusion coefficient) are summarized for each system. A major difference in the formulations is shown to exist depending on whether counter diffusion or salt diffusion is assumed. This difference between counter and salt diffusion is shown to affect the interpretation of values for the effective diffusion coefficient in a clay membrane based on previously published experimental data. Solute transport theories based on both counter and salt diffusion then are used to re-evaluate previously published column test data for the same clay membrane. The results indicate that, despite the theoretical inconsistency between the counter-diffusion assumption and the salt-diffusion conditions of the experiments, the predictive ability of solute transport theory based on the assumption of counter diffusion is not significantly different from that based on the assumption of salt diffusion, provided that the input parameters used in each theory are derived under the same assumption inherent in the theory. Nonetheless, salt-diffusion theory is fundamentally correct and, therefore, is more appropriate for problems involving salt diffusion in clay membranes. Finally, the fact that solute diffusion cannot occur in an ideal or perfect membrane is not explicitly captured in any of the theoretical expressions for total solute flux in clay membranes, but rather is generally accounted for via inclusion of an effective porosity, n(e), or a restrictive tortuosity factor, tau(r), in the formulation of Fick's first law for diffusion. Both n(e) and tau(r) have been correlated as a linear function of membrane efficiency. This linear correlation is supported theoretically by pore-scale modeling of solid-liquid interactions, but experimental support is limited. Additional data are needed to bolster the validity of the linear correlation for clay membranes. Copyright 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensive research conducted over the past several decades has indicated that semipermeable membrane behavior (i.e., the ability of a porous medium to restrict the passage of solutes) may have a significant influence on solute migration through a wide variety of clay-rich soils, including both natural clay formations (aquitards, aquicludes) and engineered clay barriers (e.g., landfill liners and vertical cutoff walls). Restricted solute migration through clay membranes generally has been described using coupled flux formulations based on nonequilibrium (irreversible) thermodynamics. However, these formulations have differed depending on the assumptions inherent in the theoretical development, resulting in some confusion regarding the applicability of the formulations. Accordingly, a critical review of coupled flux formulations for liquid, current, and solutes through a semipermeable clay membrane under isothermal conditions is undertaken with the goals of explicitly resolving differences among the formulations and illustrating the significance of the differences from theoretical and practical perspectives. Formulations based on single-solute systems (i.e., uncharged solute), single-salt systems, and general systems containing multiple cations or anions are presented. Also, expressions relating the phenomenological coefficients in the coupled flux equations to relevant soil properties (e.g., hydraulic conductivity and effective diffusion coefficient) are summarized for each system. A major difference in the formulations is shown to exist depending on whether counter diffusion or salt diffusion is assumed. This difference between counter and salt diffusion is shown to affect the interpretation of values for the effective diffusion coefficient in a clay membrane based on previously published experimental data. Solute transport theories based on both counter and salt diffusion then are used to re-evaluate previously published column test data for the same clay membrane. The results indicate that, despite the theoretical inconsistency between the counter-diffusion assumption and the salt-diffusion conditions of the experiments, the predictive ability of solute transport theory based on the assumption of counter diffusion is not significantly different from that based on the assumption of salt diffusion, provided that the input parameters used in each theory are derived under the same assumption inherent in the theory. Nonetheless, salt-diffusion theory is fundamentally correct and, therefore, is more appropriate for problems involving salt diffusion in clay membranes. Finally, the fact that solute diffusion cannot occur in an ideal or perfect membrane is not explicitly captured in any of the theoretical expressions for total solute flux in clay membranes, but rather is generally accounted for via inclusion of an effective porosity, ne, or a restrictive tortuosity factor, tr, in the formulation of Fick's first law for diffusion. Both ne and tr have been correlated as a linear function of membrane efficiency. This linear correlation is supported theoretically by pore-scale modeling of solid-liquid interactions, but experimental support is limited. Additional data are needed to bolster the validity of the linear correlation for clay membranes.