3 resultados para Webless Migratory Game Bird Research Program (U.S.)
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Undergraduate research experiences have become an integral part of the Hamilton College chemistry experience. The major premise of the chemistry department’s curriculum is that research is a powerful teaching tool. Curricular offerings have been developed and implemented to better prepare students for the independence required for successful undergraduate research experiences offered during the academic year and the summer. Administrative support has played a critical role in our ability to initiate and sustain scholarly research programs for all faculty members in the department. The research-rich curriculum is built directly upon or derived from the scholarly research agendas of our faculty members. The combined strengths and synergies of our curriculum and summer research program have allowed us to pursue several programmatic initiatives.
Resumo:
People of all ages enjoy listening to music, yet most research in musical development has concentrated on infancy through childhood. Our recent research program examined various aspects of music cognition in younger (ages 18 through 30) and older adults (ages 60 through 80) with varying amounts of musical experience. The studies investigated the independent and combined influences of age and experience on a wide assortment of long and short-term memory tasks. Results showed that some musical tasks reflect the same age-related declines as seen in nonmusical tasks, and musical training does not reduce these age-related declines. In other tasks, experience differences were larger than age differences; in some cases, age differences were nonexistent. The analysis considers how aging and experience may affect different aspects of cognition, and the paper concludes by pointing out the many musical activities that even nonmusical seniors are well equipped to succeed at and enjoy.
Resumo:
Objectives: Previous research conducted in the late 1980s suggested that vehicle impacts following an initial barrier collision increase severe occupant injury risk. Now over 25years old, the data are no longer representative of the currently installed barriers or the present US vehicle fleet. The purpose of this study is to provide a present-day assessment of secondary collisions and to determine if current full-scale barrier crash testing criteria provide an indication of secondary collision risk for real-world barrier crashes. Methods: To characterize secondary collisions, 1,363 (596,331 weighted) real-world barrier midsection impacts selected from 13years (1997-2009) of in-depth crash data available through the National Automotive Sampling System (NASS) / Crashworthiness Data System (CDS) were analyzed. Scene diagram and available scene photographs were used to determine roadside and barrier specific variables unavailable in NASS/CDS. Binary logistic regression models were developed for second event occurrence and resulting driver injury. To investigate current secondary collision crash test criteria, 24 full-scale crash test reports were obtained for common non-proprietary US barriers, and the risk of secondary collisions was determined using recommended evaluation criteria from National Cooperative Highway Research Program (NCHRP) Report 350. Results: Secondary collisions were found to occur in approximately two thirds of crashes where a barrier is the first object struck. Barrier lateral stiffness, post-impact vehicle trajectory, vehicle type, and pre-impact tracking conditions were found to be statistically significant contributors to secondary event occurrence. The presence of a second event was found to increase the likelihood of a serious driver injury by a factor of 7 compared to cases with no second event present. The NCHRP Report 350 exit angle criterion was found to underestimate the risk of secondary collisions in real-world barrier crashes. Conclusions: Consistent with previous research, collisions following a barrier impact are not an infrequent event and substantially increase driver injury risk. The results suggest that using exit-angle based crash test criteria alone to assess secondary collision risk is not sufficient to predict second collision occurrence for real-world barrier crashes.