3 resultados para Units of measurement
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Modifications and upgrades to the hydraulic flume facility in the Environmental Fluid Mechanics and Hydraulics Laboratory (EFM&H) at Bucknell University are described. These changes enable small-scale testing of model marine hydrokinetic(MHK) devices. The design of the experimental platform provides a controlled environment for testing of model MHK devices to determine their effect on localsubstrate. Specifically, the effects being studied are scour and erosion around a cylindrical support structure and deposition of sediment downstream from the device.
Resumo:
The PM3 semiempirical quantum-mechanical method was found to systematically describe intermolecular hydrogen bonding in small polar molecules. PM3 shows charge transfer from the donor to acceptor molecules on the order of 0.02-0.06 units of charge when strong hydrogen bonds are formed. The PM3 method is predictive; calculated hydrogen bond energies with an absolute magnitude greater than 2 kcal mol-' suggest that the global minimum is a hydrogen bonded complex; absolute energies less than 2 kcal mol-' imply that other van der Waals complexes are more stable. The geometries of the PM3 hydrogen bonded complexes agree with high-resolution spectroscopic observations, gas electron diffraction data, and high-level ab initio calculations. The main limitations in the PM3 method are the underestimation of hydrogen bond lengths by 0.1-0.2 for some systems and the underestimation of reliable experimental hydrogen bond energies by approximately 1-2 kcal mol-l. The PM3 method predicts that ammonia is a good hydrogen bond acceptor and a poor hydrogen donor when interacting with neutral molecules. Electronegativity differences between F, N, and 0 predict that donor strength follows the order F > 0 > N and acceptor strength follows the order N > 0 > F. In the calculations presented in this article, the PM3 method mirrors these electronegativity differences, predicting the F-H- - -N bond to be the strongest and the N-H- - -F bond the weakest. It appears that the PM3 Hamiltonian is able to model hydrogen bonding because of the reduction of two-center repulsive forces brought about by the parameterization of the Gaussian core-core interactions. The ability of the PM3 method to model intermolecular hydrogen bonding means reasonably accurate quantum-mechanical calculations can be applied to small biologic systems.
Resumo:
Pesiqta Rabbati is a unique homiletic midrash that follows the liturgical calendar in its presentation of homilies for festivals and special Sabbaths. This article attempts to utilize Pesiqta Rabbati in order to present a global theory of the literary production of rabbinic/homiletic literature. In respect to Pesiqta Rabbati it explores such areas as dating, textual witnesses, integrative apocalyptic meta-narrative, describing and mapping the structure of the text, internal and external constraints that impacted upon the text, text linguistic analysis, form-analysis: problems in the texts and linguistic gap-filling, transmission of text, strict formalization of a homiletic unit, deconstructing and reconstructing homiletic midrashim based upon form-analytic units of the homily, Neusner’s documentary hypothesis, surface structures of the homiletic unit, and textual variants. The suggested methodology may assist scholars in their production of editions of midrashic works by eliminating superfluous material and in their decoding and defining of ancient texts.