3 resultados para Uniaxial bianisotropic, Transverse transmission line method
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Laboratory exercises that confront students with decisive ouantum ohenomena nrovide valuable motivation for the kudy of quantum m&hanics. The idea that microscopic matter exists in quantized states can be demonstrated with modern versions of historic experiments: atomic line snectra. blackbodv radiation. and resonance potentials. In this experiment, we present a strikingly simple and visual method for determining the wavelength of spectral lines. This experiment not only shows the inadequacy of classical physics, but also indicates the power of optical measurements.
Resumo:
Creatinine levels in blood serum are typically used to assess renal function. Clinical determination of creatinine is often based on the Jaffe reaction, in which creatinine in the serum reacts with sodium picrate, resulting in a spectrophotometrically quantifiable product. Previous work from our lab has introduced an electrophoretically mediated initiation of this reaction, in which nanoliter plugs of individual reagent solutions can be added to the capillary and then mixed and reacted. Following electrophoretic separation of the product from excess reactant(s), the product can be directly determined on column. This work aims to gain a detailed understanding of the in-capillary reagent mixing dynamics, in-line reaction yield, and product degradation during electrophoresis, with an overall goal of improving assay sensitivity. One set of experiments focuses on maximizing product formation through manipulation of various conditions such as pH, voltage applied, and timing of the applied voltage, in addition to manipulations in the identity, concentration, and pH of the background electrolyte. Through this work, it was determined that dramatic changes in local voltage fields within the various reagent zones lead to ineffective reagent overlapping. Use of the software simulation program Simul 5 enabled visualization of the reaction dynamics within the capillary, specifically the wide variance between the electric field intensities within the creatinine and picrate zones. Because of this simulation work, the experimental method was modified to increase the ionic strength of the creatinine reagent zone to lower the local voltage field, thus producing more predictable and effective overlap conditions for the reagents and allowing the formation of more Jaffe product. As second set of experiments focuses on controlling the post-reaction product degradation. In that vein, we have systematically explored the importance of the identity, concentration, and pH of the background electrolyte on the post-reaction degradation rate of the product. Although prior work with borate background electrolytes indicated that product degradation was probably a function of the ionic strength of the background electrolyte, this work with a glycine background electrolyte demonstrates that degradation is in fact not a function of ionic strength of the background electrolyte. As the concentration and pH of the glycine background increased, the rate of degradation of product did not change dramatically, whereas in borate-buffered systems, the rate of Jaffe product degradation increased linearly with background electrolyte concentration above 100.0 mM borate. Similarly, increasing pH of the glycine background electrolyte did not result in a corresponding increase in product degradation, as it had with the borate background electrolyte. Other general trends that were observed include: increasing background electrolyte concentration increases peak efficiency and higher pH favors product formation; thus, it appears that use of a background electrolyte other than borate, such as glycine, the rate of degradation of the Jaffe product can be slowed, increasing the sensitivity of this in-line assay.
Resumo:
Projects for the developing world usually find themselves at the bottom of an engineer’s priority list. There is often very little engineering effort placed on creating new products for the poorest people in the world. This trend is beginning to change now as people begin to recognize the potential for these projects. Engineers are beginning to try and solve some of the direst issues in the developing world and many are having positive impacts. However, the conditions needed to support these projects can only be maintained in the short term. There is now a need for greater sustainability. Sustainability has a wide variety of definitions in both business and engineering. These concepts are analyzed and synthesized to develop a broad meaning of sustainability in the developing world. This primarily stems from the “triple bottom line” concept of economic, social, and environmental sustainability. Using this model and several international standards, this thesis develops a metric for guiding and evaluating the sustainability of engineering projects. The metric contains qualitative questions that investigate the sustainability of a project. It is used to assess several existing projects in order to determine flaws. Specifically, three projects seeking to deliver eyeglasses are analyzed for weaknesses to help define a new design approach for achieving better results. Using the metric as a guiding tool, teams designed two pieces of optometry equipment: one to cut lenses for eyeglasses and the other to diagnose refractive error, or prescription. These designs are created and prototyped in the developed and developing worlds in order to determine general feasibility. Although there is a recognized need for eventual design iterations, the whole project is evaluated using the developed metric and compared to the existing projects. Overall, the success demonstrates the improvements made to the long-term sustainability of the project resulting from the use of the sustainability metric.