2 resultados para Tunable
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Through the use of Transient Diode Laser Absorption Spectroscopy (TDLAS), the rate coefficient for the vibrational relaxation of N2O (ν2) by O(3P) at room temperature (32 ºC)) was determined to be (1.51 ± 0.11)x10-12 cm3molecule-1sec-1. A Q-switched, frequency quadrupled (266 nm) Nd:YAG laser pulse was used as the pump for this experiment. This pulse caused the photodissociation of O3 into O2 and O atoms.Excited oxygen (O(1D)) was collisionally quenched to ground state (O(3P)) by Ar and/or Xe. Photodissociation also caused a temperature jump within the system, exciting the ν2 state of N2O molecules. Population in the ν2 state was monitored through a TDLASobservation of a ν3 transition. Data were fit using a Visual Fortran 6.0 Global Fitting program. Analysis of room temperature data taken using only Ar to quench O atoms to the ground state gave the same rate coefficient as analysis of data taken using an Ar/Xe mixture, suggesting Ar alone is a sufficient bath gas. Experimentation was alsoperformed at -27 ºC and -82 ºC for a temperature dependence analysis. A linear regression analysis gave a rate coefficient dependence on temperature of ... for the rate coefficient of the vibrational relaxation of N2O (ν2) by atomic oxygen.
Resumo:
The blending of common polymers allows for the rapid and facile synthesis of new materials with highly tunable properties at a fraction of the costs of new monomer development and synthesis. Most blends of polymers, however, are completely immiscible and separate into distinct phases with minimal phase interaction, severelydegrading the performance of the material. Cross-phase interactions and property enhancement can be achieved with these blends through reactive processing or compatibilizer addition. A new class of blend compatibilization relies on the mechanochemical reactions between polymer chains via solid-state, high energy processing. Two contrasting mechanochemical processing techniques are explored in this thesis: cryogenic milling and solid-state shear pulverization (SSSP). Cryogenic milling is a batch process where a milling rod rapidly impacts the blend sample while submerged within a bath of liquid nitrogen. In contrast, SSSP is a continuous process where blend components are subjected to high shear and compressive forces while progressing down a chilled twin-screw barrel. In the cryogenic milling study, through the application of a synthesized labeledpolymer, in situ formation of copolymers was observed for the first time. The microstructures of polystyrene/high-density polyethylene (PS/HDPE) blends fabricated via cryomilling followed by intimate melt-state mixing and static annealing were found to be morphologically stable over time. PS/HDPE blends fabricated via SSSP also showed compatibilization by way of ideal blend morphology through growth mechanisms with slightly different behavior compared to the cryomilled blends. The new Bucknell University SSSP instrument was carefully analyzed and optimized to produce compatibilized polymer blends through a full-factorial experiment. Finally, blends of varying levels of compatibilization were subjected to common material tests to determine alternative means of measuring and quantifying compatibilization,