2 resultados para Tryptophan

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soybean lipoxygenase-1 is a model for lipoxygenase activity. While the mechanism of oxygenation is understood, the substrate binding mechanism has not yet been elucidated. Two putative binding mechanisms are the ¿head-first¿ and ¿tail-first¿ models, in which the carboxy-terminus or the methyl terminus of the fatty acid substrate is inserted into the active site while the remainder of the molecule protrudes from the surface, respectively. Previous work has demonstrated that derivatization of fatty acid substrates with D-tryptophan increases active site affinity. It has also been shown that while polyunsaturated fatty acids are the natural substrates of lipoxygenases, monounsaturated fatty acids can be oxygenated at a much slower rate. Starting with a monounsaturated fatty acid, oleic acid, as a platform, the molecule N-oleoyl-D-tryptophan (ODT) was synthesized with the anticipation of it being a potent competitive substrate-analogue inhibitor that could be used to discern the substrate binding mechanism. Inhibition kinetics demonstrated that this molecule functions as a partially competitive inhibitor, through an unknown mechanism. The implication behind partially competitive inhibition is that substrate and inhibitor molecules can bind simultaneously to the enzyme, which alludes to the presence of an allosteric binding domain. To investigate the possibility of an inhibitor binding site on the non-catalytic subunit, limited proteolysis was used to cleave the subunits apart which should have eliminated inhibition. Interestingly, it was observed that at high substrate concentrations the inhibitor was completely ineffective, but at low substrate concentrations the inhibitor maintained its standard efficacy. A satisfactory explanation for these results has not yet been determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The TM0727 gene of Thermotoga maritima is responsible for encoding what has been reported to be a modulator of DNA gyrase (pmbA). Although the function of pmbA is still unknown, it is believedto be involved in cell division, carbon storage regulation, and the synthesis of the antibiotic peptide microcin B17. It is suggested that it serves together with tldD, a known zinc dependent protease, tomodulate DNA gyrase. TM0727 is believed to be a zinc dependent protease that binds zinc in the central active site of the molecule, located between two equivalent monomeric units. However, thecrystal structure determined by Wilson et al. (2005) did not contain zinc. It therefore remains to be seen if TM0727 requires zinc for activity, or regulation, and if the protein is indeed a protease. To begin studying this protein, the gene was expressed in BL21(DE3) pLysS cells and the induction time was optimized. Using affinity and ion exchange chromatography, the protein has been successfully purified. The purification procedure can be replicated to obtain sufficient protein for characterization. Purification results show that the protein loses stability after 24 hours and remains stable under an imidazole-free lysis workup. Preliminary characterization of TM0727 has focused on understanding the protein’s structuralproperties through tryptophan fluorescence anisotropy measurements. The four tryptophan residues located within the TM0727 dimer fluoresce at different maximum wavelengths and with differentintensities upon excitation with 295nm light. These emission properties are highly sensitive to the environment (solvent, surrounding residues) of each tryptophan residue. The low number oftryptophans allows for a specific monitoring of the protein’s structure as it denatures. As more denaturant is added to the protein, its tryptophan environments have clearly altered. This is indicative of unfolding and increased solvent exposure of the protein. This unfolding has been confirmed with the addition of a fluorescent quencher. Additionally, fluorescence anisotropy measurements have been carried out on the protein to gain a preliminary understanding of the rotational dynamics of the tryptophan residues. These experiments excite the tryptophan residues within the sample using a polarized light source. Polarized emission is then detected, the degree of which depends on the rotational dynamics and local environment of the tryptophan residues. The protein was denatured and the changes in emission were recorded to detect these structural changes. Results have shown a large change in quaternary structure, consistent with a dimer to monomer transition, occurs at 1.5M Guandidine HCl. There has also been an examination of the crystal structure for the location of a potential active site. The inner cavity of the protein was inspected visually to locate a potential location for a catalytic triad, specifically the amino acids found in the active sites of serine, cyteine, and aspartateproteases. It was found that a potential aspartic protease active site may be located between the Asparate286 and Aspartate287 residues. Further investigation is warranted to test this remotepossibility.