6 resultados para Transition moments, Coupled-Cluster theory, excited states, triplet, excimer
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
The energetics, structures, stabilities and reactivities of[CnH2]2+ ions have been investigated using computational methods and experimental mass spectrometric techniques. Spontaneous decompositions of [CnH2]2+ into [CnH]+ + H+ products, observed for ions with odd-n values, have been explained by invoking the formation of excited triplet states. Even-n [CnH]+ ions possess triplet ground states with low-lying excited states, whereas odd-n ions have triplet states with energies several eV above ground singlet states. Radiationless transitions of vibrationally excited long-lived triplet state ions into singlet state continua are suggested as possible mechanisms for spontaneous deprotonation processes of odd-n [CnH2]2+ ions. Evidence for these long-lived excited states has been obtained in bimolecular single electron transfer reactions.
Resumo:
Potential energy curves have been computed for [C2H6]2+ ions and the results used to interpret the conspicuous absence of these ions in 2E mass spectra and in charge-stripping experiments. The energies and structures of geometry-optimized ground-state singlet and excited-state triplet [C2H6]2+ ions have been determined along with energies for different decomposition barriers and dissociation asymptotes. Although singlet and triplet [C2H6]2+ ions can exist as stable entities, they possess low energy barriers to decomposition. Vertical Franck-Condon transitions, involving electron impact ionization of ethane as well as charge-stripping collisions of [C2H6]+ ions, produce [C2H6]2+ ions which promptly dissociate since they are formed with energies in excess of various decomposition barriers. Appearance energies computed for doubly-charged ethane fragment ions are in accordance with experimental values.
Resumo:
na provide students with motivation for the study of quantum mechanics. That microscopic matter exists in quantized states can be demonstrated with modem versions of historic experiments: atomic line spectra (I), resonance potentials, and blackbody radiation. The resonance potentials of mercury were discovered by Franck and Hertz in 1914 (2). Their experiment consisted of bombarding atoms by electrons, and detecting the kinetic energy loss of the scattered electrons (3). Prior to the Franck-Hertz experiment, spectroscopic work bv Balmer and Rvdbere revealed that atoms emitted radiatibn at discrete ekergiis. The Franck-Hertz experiment showed directly that auantized enerm levels in an atom are real, not jist optiEal artifacts. atom can be raised to excited states by inelastic collisions with electrons as well as lowered from excited states by emission of photons. The classic Franck-Hertz experiment is carried out with mercury (4-7). Here we present an experiment for the study of resonance potentials using neon.
Resumo:
Potential energy curves have been calculated for CnH22+ (n = 2−9) ions and results have been compared with data on unimolecular charge-separation reactions obtained by Rabrenović and Beynon. Geometry-optimized, minimum energy, linear CnH22+ structures have been computed for ground and low-lying excited states. These carbodications exist in stable configurations with well depths greater than 3 eV. Decomposition pathways into singly charged fragment ions lead to products with computed kinetic energies in excess of 1 eV. A high degree of correlation exists between experimental information and results computed for linear CnH22+ structures having hydrogen atoms on each end. The exception involves C4H22+reactions where a low-lying doubly charged isomer must be invoked to rationalize the experimental data.
Resumo:
Talk of different types of cells is commonplace in the biological sciences. We know a great deal, for example, about human muscle cells by studying the same type of cells in mice. Information about cell type is apparently largely projectible across species boundaries. But what defines cell type? Do cells come pre-packaged into different natural kinds? Philosophical attention to these questions has been extremely limited [see e.g., Wilson (Species: New Interdisciplinary Essays, pp 187-207, 1999; Genes and the Agents of Life, 2005; Wilson et al. Philos Top 35(1/2): 189-215, 2007)]. On the face of it, the problems we face in individuating cellular kinds resemble those biologists and philosophers of biology encountered in thinking about species: there are apparently many different (and interconnected) bases on which we might legitimately classify cells. We could, for example, focus on their developmental history (a sort of analogue to a species' evolutionary history); or we might divide on the basis of certain structural features, functional role, location within larger systems, and so on. In this paper, I sketch an approach to cellular kinds inspired by Boyd's Homeostatic Property Cluster Theory, applying some lessons from this application back to general questions about the nature of natural kinds.
Resumo:
Collision-induced dissociation (CID) of peptides using tandem mass spectrometry (MS) has been used to determine the identity of peptides and other large biological molecules. Mass spectrometry (MS) is a useful tool for determining the identity of molecules based on their interaction with electromagnetic fields. If coupled with another method like infrared (IR) vibrational spectroscopy, MS can provide structural information, but in its own right, MS can only provide the mass-to-charge (m/z) ratio of the fragments produced, which may not be enough information to determine the mechanism of the collision-induced dissociation (CID) of the molecule. In this case, theoretical calculations provide a useful companion for MS data and yield clues about the energetics of the dissociation. In this study, negative ion electrospray tandem MS was used to study the CID of the deprotonated dipeptide glycine-serine (Gly-Ser). Though negative ion MS is not as popular a choice as positive ion MS, studies by Bowie et al. show that it yields unique clues about molecular structure which complement positive ion spectroscopy, such as characteristic fragmentations like the loss of formaldehyde from the serine residue.2 The increase in the collision energy in the mass spectrometer alters the flexibility of the dipeptide backbone, enabling isomerizations (reactions not resulting in a fragment loss) and dissociations to take place. The mechanism of the CID of Gly-Ser was studied using two computational methods, B3LYP/6-311+G* and M06-2X/6-311++G**. The main pathway for molecular dissociation was analyzed in 5 conformers in an attempt to verify the initial mechanism proposed by Dr. James Swan after examination of the MS data. The results suggest that the loss of formaldehyde from serine, which Bowie et al. indicates is a characteristic of the presence of serine in a protein residue, is an endothermic reaction that is made possible by the conversion of the translational energy of the ion into internal energy as the ion collides with the inert collision gas. It has also been determined that the M06-2X functional¿s improved description of medium and long-range correlation makes it more effective than the B3LYP functional at finding elusive transition states. M06-2X also more accurately predicts the energy of those transition states than does B3LYP. A second CID mechanism, which passes through intermediates with the same m/z ratio as the main pathway for molecular dissociation, but different structures, including a diketopiperazine intermediate, was also studied. This pathway for molecular dissociation was analyzed with 3 conformers and the M06-2X functional, due to its previously determined effectiveness. The results suggest that the latter pathway, which meets the same intermediate masses as the first mechanism, is lower in overall energy and therefore a more likely pathway of dissociation than the first mechanism.