3 resultados para Total-energy calculations

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A computationally efficient procedure for modeling the alkaline hydrolysis of esters is proposed based on calculations performed on methyl acetate and methyl benzoate systems. Extensive geometry and energy comparisons were performed on the simple ester methyl acetate. The effectiveness of performing high level single point ab initio energy calculations on the geometries obtained from semiempirical and ab initio methods was determined. The AM1 and PM3 semiempirical methods are evaluated for their ability to model the transition states and intermediates for ester hydrolysis. The Cramer/Truhlar SM3 solvation method was used to determine activation energies. The most computationally efficient way to model the transition states of large esters is to use the PM3 method. The PM3 transition structure can then be used as a template for the design of haptens capable of inducing catalytic antibodies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using molecular dynamics configurational sampling combined with ab initio energy calculations, we determined the low energy isomers of the bisulfate hydrates. We calculated the CCSD(T) complete basis set (CBS) binding electronic and Gibbs free energies for 53 low energy isomers of HSO4–(H2O)n=1–6 and derived the thermodynamics of adding waters sequentially to the bisulfate ion and its hydrates. Comparing the HSO4–/H2O system to the neutral H2SO4/H2O cluster, water binds more strongly to the anion than it does to the neutral molecules. The difference in the binding thermodynamics of HSO4–/H2O and H2SO4/H2O systems decreases with increasing number of waters. The thermodynamics for the formation of HSO4–(H2O)n=1–5 is favorable at 298.15 K, and that of HSO4–(H2O)n=1–6 is favorable for T < 273.15 K. The HSO4– ion is almost always hydrated at temperatures and relative humidity values encountered in the troposphere. Because the bisulfate ion binds more strongly to sulfuric acid than it does to water, it is expected to play a role in ion-induced nucleation by forming a strong complex with sulfuric acid and water, thus facilitating the formation of a critical nucleus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The AM1 and PM3 molecular orbital methods have been utilized to investigate the reactions of CH20H with NO and NO2 PM3 and AM1 calculated heats of formation differ from experimental values by 8.6 and 18.8 kcal mol-', respectively. The dominant reaction of CH20H with NO is predicted to produce the adduct HOCH2N0, supporting the hypothesis of Pagsberg, Munk, Anastasi, and Simpson. Calculated activation energies for the NO2 system predict the formation of the adducts HOCH2N02 and HOCH20N0. In addition, the PM3 calculations predict that the abstraction reaction producing CH20 and HN02 is more likely than one producing CH20 and HONO from reactions of CH20H with NO2.