2 resultados para Time domain
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Energy transfer between the interacting waves in a distributed Brillouin sensor can result in a distorted measurement of the local Brillouin gain spectrum, leading to systematic errors. It is demonstrated that this depletion effect can be precisely modelled. This has been validated by experimental tests in an excellent quantitative agreement. Strict guidelines can be enunciated from the model to make the impact of depletion negligible, for any type and any length of fiber. (C) 2013 Optical Society of America
Resumo:
Forward-looking ground penetrating radar shows promise for detection of improvised explosive devices in active war zones. Because of certain insurmountable physical limitations, post-processing algorithm development is the most popular research topic in this field. One such investigative avenue explores the worthiness of frequency analysis during data post-processing. Using the finite difference time domain numerical method, simulations are run to test both mine and clutter frequency response. Mines are found to respond strongest at low frequencies and cause periodic changes in ground penetrating radar frequency results. These results are called into question, however, when clutter, a phenomenon generally known to be random, is also found to cause periodic frequency effects. Possible causes, including simulation inaccuracy, are considered. Although the clutter models used are found to be inadequately random, specular reflections of differing periodicity are found to return from both the mine and the ground. The presence of these specular reflections offers a potential alternative method of determining a mine’s presence.