2 resultados para Three-dimensional measuring
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Icy debris fans have are newly-described landforms (Kochel and Trop, 2008 and 2012) as landforms developed immediately after deglaciation on Earth and similar features have been observed on Mars. Subsurface characteristics of Icy debris fans have not been previously investigated. Ground penetrating radar (GPR) was used to non-invasively investigate the subsurface characteristics of icy debris fans near McCarthy, Alaska, USA. The three fans investigated in Alaska are the East, West, and Middle fans (Kochel and Trop, 2008 and 2012) which below the Nabesna ice cap and on top of the McCarthy Creek Glacier. Icy debris fans in general are a largely unexplored suite of paraglacial landforms and processes in alpine regions. Recent field studies focused on direct observations and depositional processes. Their results showed that the fan's composition is primarily influenced by the type and frequency of depositional processes that supply the fan. Photographic studies show that the East Fan receives far more ice and snow avalanches whereas the Middle and West Fans receive fewer mass wasting events but more clastic debris is deposited on the Middle and West fan from rock falls and icy debris flows. GPR profiles and Wide-angle reflection and refraction (WARR) surveys consisting of both, common mid-point (CMP), and common shot-point (CSP) surveys investigated the subsurface geometry of the fans and the McCarthy Creek Glacier. All GPR surveys were collected in July of 2013 with 100MHz bi-static antennas. Four axial profiles and three cross-fan profiles were done on the West and Middle fans as well as the McCarthy Creek Glacier in order to investigate the relationship between the three features. GPR profiles yielded reflectors that were continuous for 10+ m and hyperbolic reflections in the subsurface. The depth to these reflections in the subsurface requires knowledge of the velocity of the subsurface. To find the velocity of the subsurface eight WARR surveys collected on the fans and on the McCarthy Creek glacier to provide information on variability of subsurface velocities. The profiles of the Middle and West fan have more reflections in their profiles compared to profiles done on the McCarthy Creek Glacier. Based on the WARR surveys, we interpret the lower energy return in the glacier to be caused by two reasons. 1) The increased attenuation due to wet ice versus drier ice and on the fan with GPR velocities >0.15m/ns. 2) Lack of interfaces in the glacier compared to those in the fans which are inferred to be produced by the alternating layers of stratified ice and lithic-rich layers. The GPR profiles on the West and Middle Fans show the shallow subsurface being dominated by lenticular reflections interpreted to be consistent with the shape of surficial deposits. The West Fan is distinguished from the Middle Fan by the nature of its reflections patterns and thicknesses of reflection packages that clearly shows the Middle fan with a greater thickness. The changes in subsurface reflections between the Middle and West Fans as well as the McCarthy Creek Glacier are thought to reflect the type and frequency of depositional processes and surrounding bedrock and talus slopes.
Resumo:
Brain functions, such as learning, orchestrating locomotion, memory recall, and processing information, all require glucose as a source of energy. During these functions, the glucose concentration decreases as the glucose is being consumed by brain cells. By measuring this drop in concentration, it is possible to determine which parts of the brain are used during specific functions and consequently, how much energy the brain requires to complete the function. One way to measure in vivo brain glucose levels is with a microdialysis probe. The drawback of this analytical procedure, as with many steadystate fluid flow systems, is that the probe fluid will not reach equilibrium with the brain fluid. Therefore, brain concentration is inferred by taking samples at multiple inlet glucose concentrations and finding a point of convergence. The goal of this thesis is to create a three-dimensional, time-dependent, finite element representation of the brainprobe system in COMSOL 4.2 that describes the diffusion and convection of glucose. Once validated with experimental results, this model can then be used to test parameters that experiments cannot access. When simulations were run using published values for physical constants (i.e. diffusivities, density and viscosity), the resulting glucose model concentrations were within the error of the experimental data. This verifies that the model is an accurate representation of the physical system. In addition to accurately describing the experimental brain-probe system, the model I created is able to show the validity of zero-net-flux for a given experiment. A useful discovery is that the slope of the zero-net-flux line is dependent on perfusate flow rate and diffusion coefficients, but it is independent of brain glucose concentrations. The model was simplified with the realization that the perfusate is at thermal equilibrium with the brain throughout the active region of the probe. This allowed for the assumption that all model parameters are temperature independent. The time to steady-state for the probe is approximately one minute. However, the signal degrades in the exit tubing due to Taylor dispersion, on the order of two minutes for two meters of tubing. Given an analytical instrument requiring a five μL aliquot, the smallest brain process measurable for this system is 13 minutes.