8 resultados para Thermochemical pretreatment

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The G2, G3, CBS-QB3, and CBS-APNO model chemistry methods and the B3LYP, B3P86, mPW1PW, and PBE1PBE density functional theory (DFT) methods have been used to calculate ΔH° and ΔG° values for ionic clusters of the ammonium ion complexed with water and ammonia. Results for the clusters NH4+(NH3)n and NH4+(H2O)n, where n = 1−4, are reported in this paper and compared against experimental values. Agreement with the experimental values for ΔH° and ΔG° for formation of NH4+(NH3)n clusters is excellent. Comparison between experiment and theory for formation of the NH4+(H2O)n clusters is quite good considering the uncertainty in the experimental values. The four DFT methods yield excellent agreement with experiment and the model chemistry methods when the aug-cc-pVTZ basis set is used for energetic calculations and the 6-31G* basis set is used for geometries and frequencies. On the basis of these results, we predict that all ions in the lower troposphere will be saturated with at least one complete first hydration shell of water molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GAUSSIAN 2, GAUSSIAN 3, complete basis set-QB3, and complete basis set-APNO methods have been used to calculate ΔH∘ and ΔG∘ values for ionic clusters of hydronium and hydroxide ions complexed with water. Results for the clusters H3O+(H2O)n andOH−(H2O)n, where n=1–4 are reported in this paper, and compared against experimental values contained in the National Institutes of Standards and Technology (NIST) database. Agreement with experiment is excellent for the three ab initio methods for formation of these clusters. The high accuracy of these methods makes them reliable for calculating energetics for the formation of ionic clusters containing water. In addition this allows them to serve as a valuable check on the accuracy of experimental data reported in the NIST database, and makes them useful tools for addressing unresolved issues in atmospheric chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe and analyze the efficiency of a new solar-thermochemical reactor concept, which employs a moving packed bed of reactive particles produce of H2 or CO from solar energy and H2O or CO2. The packed bed reactor incorporates several features essential to achieving high efficiency: spatial separation of pressures, temperature, and reaction products in the reactor; solid–solid sensible heat recovery between reaction steps; continuous on-sun operation; and direct solar illumination of the working material. Our efficiency analysis includes material thermodynamics and a detailed accounting of energy losses, and demonstrates that vacuum pumping, made possible by the innovative pressure separation approach in our reactor, has a decisive efficiency advantage over inert gas sweeping. We show that in a fully developed system, using CeO2 as a reactive material, the conversion efficiency of solar energy into H2 and CO at the design point can exceed 30%. The reactor operational flexibility makes it suitable for a wide range of operating conditions, allowing for high efficiency on an annual average basis. The mixture of H2 and CO, known as synthesis gas, is not only usable as a fuel but is also a universal starting point for the production of synthetic fuels compatible with the existing energy infrastructure. This would make it possible to replace petroleum derivatives used in transportation in the U.S., by using less than 0.7% of the U.S. land area, a roughly two orders of magnitude improvement over mature biofuel approaches. In addition, the packed bed reactor design is flexible and can be adapted to new, better performing reactive materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe and analyze the efficiency of a new solar-thermochemical reactor concept, which employs a moving packed bed of reactive particles produce of H-2 or CO from solar energy and H2O or CO2. The packed bed reactor incorporates several features essential to achieving high efficiency: spatial separation of pressures, temperature, and reaction products in the reactor; solid-solid sensible heat recovery between reaction steps; continuous on-sun operation; and direct solar illumination of the working material. Our efficiency analysis includes material thermodynamics and a detailed accounting of energy losses, and demonstrates that vacuum pumping, made possible by the innovative pressure separation approach in our reactor, has a decisive efficiency advantage over inert gas sweeping. We show that in a fully developed system, using CeO2 as a reactive material, the conversion efficiency of solar energy into H-2 and CO at the design point can exceed 30%. The reactor operational flexibility makes it suitable for a wide range of operating conditions, allowing for high efficiency on an annual average basis. The mixture of H-2 and CO, known as synthesis gas, is not only usable as a fuel but is also a universal starting point for the production of synthetic fuels compatible with the existing energy infrastructure. This would make it possible to replace petroleum derivatives used in transportation in the U. S., by using less than 0.7% of the U. S. land area, a roughly two orders of magnitude improvement over mature biofuel approaches. In addition, the packed bed reactor design is flexible and can be adapted to new, better performing reactive materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gaussian-2, Gaussian-3, Complete Basis Set-QB3, and Complete Basis Set-APNO methods have been used to calculate geometries of neutral clusters of water, (H2O)n, where n = 2–6. The structures are in excellent agreement with those determined from experiment and those predicted from previous high-level calculations. These methods also provide excellent thermochemical predictions for water clusters, and thus can be used with confidence in evaluating the structures and thermochemistry of water clusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbonyl sulfide is the most abundant sulfur gas in the atmosphere. We have used MP2 and CCSD(T) theory to study the structures and thermochemistries of carbonyl sulfide interacting with one to four water molecules. We have completed an extensive search for clusters of OCS(H2O)n, where n = 1−4. We located three dimers, two trimers, five tetramers, and four pentamers with the MP2/aug-cc-pVDZ method. In each of the complexes with two or more waters, OCS preferentially interacts with low-energy water clusters. Our results match current theoretical and experimental literature, showing correlation with available geometries and frequencies for the OCS(H2O) species. The CCSD(T)/aug-cc-pVTZ thermochemical values combined with the average amount of OCS and the saturated concentration of H2O in the troposphere, lead to the prediction of 106 OCS(H2O) clusters·cm−3 and 102 OCS(H2O)2 clusters·cm−3 at 298 K. We predict the structures of OCS(H2O)n, n = 1−4 that should predominate in a low-temperature molecular beam and identify specific infrared vibrations that can be used to identify these different clusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar energy is the most abundant persistent energy resource. It is also an intermittent one available for only a fraction of each day while the demand for electric power never ceases. To produce a significant amount of power at the utility scale, electricity generated from solar energy must be dispatchable and able to be supplied in response to variations in demand. This requires energy storage that serves to decouple the intermittent solar resource from the load and enables around-the-clock power production from solar energy. Practically, solar energy storage technologies must be efficient as any energy loss results in an increase in the amount of required collection hardware, the largest cost in a solar electric power system. Storing solar energy as heat has been shown to be an efficient, scalable, and relatively low-cost approach to providing dispatchable solar electricity. Concentrating solar power systems that include thermal energy storage (TES) use mirrors to focus sunlight onto a heat exchanger where it is converted to thermal energy that is carried away by a heat transfer fluid and used to drive a conventional thermal power cycle (e.g., steam power plant), or stored for later use. Several approaches to TES have been developed and can generally be categorized as either thermophysical (wherein energy is stored in a hot fluid or solid medium or by causing a phase change that can later be reversed to release heat) or thermochemical (in which energy is stored in chemical bonds requiring two or more reversible chemical reactions).