6 resultados para Thermal energy
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Solar energy is the most abundant persistent energy resource. It is also an intermittent one available for only a fraction of each day while the demand for electric power never ceases. To produce a significant amount of power at the utility scale, electricity generated from solar energy must be dispatchable and able to be supplied in response to variations in demand. This requires energy storage that serves to decouple the intermittent solar resource from the load and enables around-the-clock power production from solar energy. Practically, solar energy storage technologies must be efficient as any energy loss results in an increase in the amount of required collection hardware, the largest cost in a solar electric power system. Storing solar energy as heat has been shown to be an efficient, scalable, and relatively low-cost approach to providing dispatchable solar electricity. Concentrating solar power systems that include thermal energy storage (TES) use mirrors to focus sunlight onto a heat exchanger where it is converted to thermal energy that is carried away by a heat transfer fluid and used to drive a conventional thermal power cycle (e.g., steam power plant), or stored for later use. Several approaches to TES have been developed and can generally be categorized as either thermophysical (wherein energy is stored in a hot fluid or solid medium or by causing a phase change that can later be reversed to release heat) or thermochemical (in which energy is stored in chemical bonds requiring two or more reversible chemical reactions).
Resumo:
Solid-state shear pulverization (SSSP) is a unique processing technique for mechanochemical modification of polymers, compatibilization of polymer blends, and exfoliation and dispersion of fillers in polymer nanocomposites. A systematic parametric study of the SSSP technique is conducted to elucidate the detailed mechanism of the process and establish the basis for a range of current and future operation scenarios. Using neat, single component polypropylene (PP) as the model material, we varied machine type, screw design, and feed rate to achieve a range of shear and compression applied to the material, which can be quantified through specific energy input (Ep). As a universal processing variable, Ep reflects the level of chain scission occurring in the material, which correlates well to the extent of the physical property changes of the processed PP. Additionally, we compared the operating cost estimates of SSSP and conventional twin screw extrusion to determine the practical viability of SSSP.
Resumo:
BACKGROUND Students frequently hold a number of misconceptions related to temperature, heat and energy. There is not currently a concept inventory with sufficiently high internal reliability to assess these concept areas for research purposes. Consequently, there is little data on the prevalence of these misconceptions amongst undergraduate engineering students. PURPOSE (HYPOTHESIS) This work presents the Heat and Energy Concept Inventory (HECI) to assess prevalent misconceptions related to: (1) Temperature vs. Energy, (2) Temperature vs. Perceptions of Hot and Cold, (3) Factors that affect the Rate vs. Amount of Heat Transfer and (4) Thermal Radiation. The HECI is also used to document the prevalence of misconceptions amongst undergraduate engineering students. DESIGN/METHOD Item analysis, guided by classical test theory, was used to refine individual questions on the HECI. The HECI was used in a one group, pre-test-post-test design to assess the prevalence and persistence of targeted misconceptions amongst a population of undergraduate engineering students at diverse institutions. RESULTS Internal consistency reliability was assessed using Kuder-Richardson Formula 20; values were 0.85 for the entire instrument and ranged from 0.59 to 0.76 for the four subcategories of the HECI. Student performance on the HECI went from 49.2% to 54.5% after instruction. Gains on each of the individual subscales of the HECI, while generally statistically significant, were similarly modest. CONCLUSIONS The HECI provides sufficiently high estimates of internal consistency reliability to be used as a research tool to assess students' understanding of the targeted concepts. Use of the instrument demonstrates that student misconceptions are both prevalent and resistant to change through standard instruction.
Resumo:
A new concept for a solar thermal electrolytic process was developed for the production of H-2 from water. A metal oxide is reduced to a lower oxidation state in air with concentrated solar energy. The reduced oxide is then used either as an anode or solute for the electrolytic production of H-2 in either an aqueous acid or base solution. The presence of the reduced metal oxide as part of the electrolytic cell decreases the potential required for water electrolysis below the ideal 1.23 V required when H-2 and O-2 evolve at 1 bar and 298 K. During electrolysis, H-2 evolves at the cathode at 1 bar while the reduced metal oxide is returned to its original oxidation state, thus completing the H-2 production cycle. Ideal sunlight-to-hydrogen thermal efficiencies were established for three oxide systems: Fe2O3-Fe3O4, Co3O4-CoO, and Mn2O3-Mn3O4. The ideal efficiencies that include radiation heat loss are as high or higher than corresponding ideal values reported in the solar thermal chemistry literature. An exploratory experimental study for the iron oxide system confirmed that the electrolytic and thermal reduction steps occur in a laboratory scale environment.
Resumo:
Solid-state shear pulverization (SSSP) is a unique processing technique for mechanochemical modification of polymers, compatibilization of polymer blends, and exfoliation and dispersion of fillers in polymer nanocomposites. A systematic parametric study of the SSSP technique is conducted to elucidate the detailed mechanism of the process and establish the basis for a range of current and future operation scenarios. Using neat, single component polypropylene (PP) as the model material, we varied machine type, screw design, and feed rate to achieve a range of shear and compression applied to the material, which can be quantified through specific energy input (Ep). As a universal processing variable, Ep reflects the level of chain scission occurring in the material, which correlates well to the extent of the physical property changes of the processed PP. Additionally, we compared the operating cost estimates of SSSP and conventional twin screw extrusion to determine the practical viability of SSSP.
Resumo:
Energy in a multipartite quantum system appears from an operational perspective to be distributed to some extent non-locally because of correlations extant among the system's components. This non-locality allows users to transfer, in effect, locally accessible energy between sites of different system components by local operations and classical communication (LOCC). Quantum energy teleportation is a three-step LOCC protocol, accomplished without an external energy carrier, for effectively transferring energy between two physically separated, but correlated, sites. We apply this LOCC teleportation protocol to a model Heisenberg spin particle pair initially in a quantum thermal Gibbs state, making temperature an explicit parameter. We find in this setting that energy teleportation is possible at any temperature, even at temperatures above the threshold where the particles' entanglement vanishes. This shows for Gibbs spin states that entanglement is not fundamentally necessary for energy teleportation; correlation other than entanglement can suffice. Dissonance-quantum correlation in separable states-is in this regard shown to be a quantum resource for energy teleportation, more dissonance being consistently associated with greater energy yield. We compare energy teleportation from particle A to B in Gibbs states with direct local energy extraction by a general quantum operation on B and find a temperature threshold below which energy extraction by a local operation is impossible. This threshold delineates essentially two regimes: a high temperature regime where entanglement vanishes and the teleportation generated by other quantum correlations yields only vanishingly little energy relative to local extraction and a second low-temperature teleportation regime where energy is available at B only by teleportation.