3 resultados para The Dutch Disease
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Today, crude oil remains a vital resource all around the world. This non-renewable resource powers countries worldwide. Besides serving as an energy source, crude oil is also the most important component for different world economies, especially in developing countries. Ecuador, a small member of the OPEC oil cartel, presents a case where its economy is oil dependent. A great percentage of the country¿s GDP and government¿s budget comes from oil revenues. Ecuador has always been a primary exporter of raw materials. In the last centuries, the country experienced three important economic booms: cacao, bananas, and, ultimately, crude oil. In this sense, the country has not been able to fully industrialize and begin to export manufactured goods, i.e., Ecuador suffers from the Dutch disease. The latter has deterred Ecuador from achieving broad-based economic development. Given crude oil¿s importance for the Ecuadorian economy, the government has always tried to influence the oil industry in search of profits and benefits. Therefore, this thesis, explores the question: how and to what extent have political interventions affected the oil industry in Ecuador from 1990 until March 2014? In general, this thesis establishes an economic history context during the last twenty-four years, attempting to research how political interventions have shaped Ecuador¿s oil industry and economy. In the analysis, it covers a period where political instability prevailed, until Rafael Correa became president. The thesis examines Ecuador¿s participation in OPEC, trying to find explanations as to why the country voluntarily left the organization in 1992, only to rejoin in 2007 when Correa rose to power. During the ¿Revolución Ciudadana¿ period, the thesis researches reforms to the Law of Hydrocarbons, variations in the relations with other nations, the controversy surrounding the YasunÃ-ITT oil block, and the ¿RefinerÃa del PacÃfico¿ construction. The thesis is an Industrial Organization detailed case study that analyzes, updates, and evaluates the intersection of economics and politics in Ecuador¿s crude oil industry during the last 24 years. In this sense I have consulted past theses, newspaper articles, books, and other published data about the petroleum industry, both from a global and Ecuadorian perspective. In addition to published sources, I was able to interview sociologists, public figures, history and economics academics, and other experts, accessing unique unpublished data about Ecuador¿s oil industry. I made an effort to collect information that shows the private and public side of the industry, i.e., from government-related and independent sources. I attempted to remain as objective as possible to make conclusions about the appropriate Industrial Organization policy for Ecuador¿s oil industry, addressing the issue from an economic, social, political, and environmental point of view. I found how Ecuador¿s political instability caused public policy to fail, molding the conduct and market structure of the crude oil industry. Throughout history, developed nations have benefited from low oil prices, but things shifted since oil prices began to rise, which is more beneficial for the developing nations that actually possess and produce the raw material. Nevertheless, Ecuador, a victim of the Dutch disease due to its heavy reliance on crude oil as a primary product, has not achieved broad-based development.
Resumo:
The emerging disease White-Nose Syndrome in hibernating bat populations across the United States has increased the need to understand the physiological benefits and consequences of hibernation and the effects on immunological responsiveness. Hibernation has been well-documented in many mammalian species, yet few studies have examined hibernation immunology in bats, particularly with respect to normal immunological patterns. In order to characterize the levels of circulating leukocytes and plasma immunoglobulins in euthermic and hibernating female big brown bats (Eptesicus fuscus), blood smear differential leukocyte counts and total immunoglobulin assays were performed for each group using blood samples from the active and hibernation seasons. Hibernation patterns – torpor and arousals from torpor – were determined by placing temperature-sensitive dataloggers on the backs of bats assigned to the hibernating group during the hibernation season. Data indicate that the ratio of circulating neutrophils to lymphocytes is lower in bats assigned to the euthermic group during the hibernation season than in bats assigned to the hibernation group during the hibernation period, but that relative immunoglobulin levels do not differ during the hibernation season, regardless of whether bats were active or hibernating. Neither bats assigned to the hibernation group nor bats assigned to the euthermic group demonstrate a significant change in the ratio of circulating neutrophils and lymphocytes between their active and hibernating seasons. Bats assigned to the hibernation group were also observed to arouse from torpor somewhat synchronously. These results suggest that innate and adaptive cell levels are maintained, at best, in hibernating bats that are not immunologically challenged and that bats that remain euthermic during the hibernation season are able to continually regulate their levels of neutrophils and lymphocytes and therefore their innate and adaptive immune system responses.
Resumo:
Definitive diagnosis of the bat disease white-nose syndrome (WNS) requires histologic analysis to identify the cutaneous erosions caused by the fungal pathogen Pseudogymnoascus [formerly Geomyces] destructans (Pd). Gross visual inspection does not distinguish bats with or without WNS, and no nonlethal, on-site, preliminary screening methods are available for WNS in bats. We demonstrate that long-wave ultraviolet (UV) light (wavelength 366-385 nm) elicits a distinct orange yellow fluorescence in bat-wing membranes (skin) that corresponds directly with the fungal cupping erosions in histologic sections of skin that are the current gold standard for diagnosis of WNS. Between March 2009 and April 2012, wing membranes from 168 North American bat carcasses submitted to the US Geological Survey National Wildlife Health Center were examined with the use of both UV light and histology. Comparison of these techniques showed that 98.8% of the bats with foci of orange yellow wing fluorescence (n=80) were WNS-positive based on histologic diagnosis; bat wings that did not fluoresce under UV light (n=88) were all histologically negative for WNS lesions. Punch biopsy samples as small as 3 mm taken from areas of wing with UV fluorescence were effective for identifying lesions diagnostic for WNS by histopathology. In a nonlethal biopsy-based study of 62 bats sampled (4-mm diameter) in hibernacula of the Czech Republic during 2012, 95.5% of fluorescent (n=22) and 100% of nonfluorescent (n=40) wing samples were confirmed by histopathology to be WNS positive and negative, respectively. This evidence supports use of long-wave UV light as a nonlethal and field-applicable method to screen bats for lesions indicative of WNS. Further, UV fluorescence can be used to guide targeted, nonlethal biopsy sampling for follow-up molecular testing, fungal culture analysis, and histologic confirmation of WNS.