5 resultados para Tension and compression
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
This thesis is an analysis of Spain’s development from dictatorship to democracy in light of the trauma that it endured during the Spanish Civil War of 1936 – 1939 and the dictatorship of Francisco Franco, which lasted until 1975. Drawing from the work of Maurice Halbwachs and Pierre Nora, this thesis seeks to use the concepts of collective memory and lieux de mémoire to analyze what role memory has played in Spanish society from 1939 to the present day. Theanalysis begins with an overview of the Spanish Civil War and Franco’s ensuing dictatorship in order to establish an understanding of the trauma endured by Spain and its people. Of importance will be the manner in which the presentation of history became manipulated anddistorted under Franco as the dictator sought to control the country’s collective memory. With this background in mind, the thesis then turns to analyze how the memory of Spain’s past has affected the country’s development in two eras: during its transition to democracy in the 1970s and in the present day. Of central importance is the pact of silence that was established during the transition to democracy, which was a tacit agreement among the Spanish people to notdiscuss the past. This pact of silence still clouds Spain’s memory today and affects modern discourse concerning the past. Yet it is clear that Spain has not been reconciled to its past, as the provocation of history inevitably results in tension and controversy. The central contention of this thesis is that the pact of silence that surrounds Spain’s past has not eliminated the trauma of the Civil War and dictatorship, as demonstrated by the controversy stirred up by people, groups and places in the present day. This contention has repercussions for the study of history as a whole, as it indicates that the past cannot be muted in order to achievereconciliation; rather, it suggests that we must engage the past in order to be reconciled to it.
Resumo:
Aerosols are known to have important effects on climate, the atmosphere, and human health. The extent of those effects is unknown and largely depend on the interaction of aerosols with water in the atmosphere. Ambient aerosols are complex mixtures of both inorganic and organic compounds. The cloud condensation nuclei (CCN) activities, hygroscopic behavior and particle morphology of a monocarboxylic amino acid (leucine) and a dicarboxylic amino acid (glutamic acid) were investigated. Activation diameters at various supersaturation conditions were experimentally determined and compared with Köhler theoretical values. The theory accounts for both surface tension and the limited solubility of organic compounds. It was discovered that glutamic acid aerosols readily took on water both when relative humidity was less than 100% and when the supersaturation condition was reached, while leucine did not show any water activation at those conditions. Moreover, the study also suggests that Köhler theory describes CCN activity of organic compounds well when only surface tension of the compound is taken into account and complete solubility is assumed. Single parameter ¿ was also computed using both CCN data and hygroscopic growth factor (GF). The results of ¿ range from 0.17 to 0.53 using CCN data and 0.09 to 0.2 using GFs. Finally, the study suggests that during the water-evaporation/particle-nucleation process, crystallization from solution droplets takes place at different locations: for glutamic acid at the particles¿ center and leucine at the particles¿ boundary.
Resumo:
Solid-state shear pulverization (SSSP) is a unique processing technique for mechanochemical modification of polymers, compatibilization of polymer blends, and exfoliation and dispersion of fillers in polymer nanocomposites. A systematic parametric study of the SSSP technique is conducted to elucidate the detailed mechanism of the process and establish the basis for a range of current and future operation scenarios. Using neat, single component polypropylene (PP) as the model material, we varied machine type, screw design, and feed rate to achieve a range of shear and compression applied to the material, which can be quantified through specific energy input (Ep). As a universal processing variable, Ep reflects the level of chain scission occurring in the material, which correlates well to the extent of the physical property changes of the processed PP. Additionally, we compared the operating cost estimates of SSSP and conventional twin screw extrusion to determine the practical viability of SSSP.
Resumo:
Solid-state shear pulverization (SSSP) is a unique processing technique for mechanochemical modification of polymers, compatibilization of polymer blends, and exfoliation and dispersion of fillers in polymer nanocomposites. A systematic parametric study of the SSSP technique is conducted to elucidate the detailed mechanism of the process and establish the basis for a range of current and future operation scenarios. Using neat, single component polypropylene (PP) as the model material, we varied machine type, screw design, and feed rate to achieve a range of shear and compression applied to the material, which can be quantified through specific energy input (Ep). As a universal processing variable, Ep reflects the level of chain scission occurring in the material, which correlates well to the extent of the physical property changes of the processed PP. Additionally, we compared the operating cost estimates of SSSP and conventional twin screw extrusion to determine the practical viability of SSSP.
Resumo:
Abstract- In this correspondence, a simple one-dimensional (1-D) differencing operation is applied to bilevel images prior to block coding to produce a sparse binary image that can be encoded efficiently using any of a number of well-known techniques. The difference image can be encoded more efficiently than the original bilevel image whenever the average run length of black pixels in the original image is greater than two. Compression is achieved because the correlation between adjacent pixels is reduced compared with the original image. The encoding/decoding operations are described and compression performance is presented for a set of standard bilevel images.