3 resultados para TUBE RECONSTRUCTION
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
This thesis assesses relationships between vegetation and topography and the impact of human tree-cutting on the vegetation of Union County during the early historical era (1755-1855). I use early warrant maps and forestry maps from the Pennsylvania historical archives and a warrantee map from the Union County courthouse depicting the distribution of witness trees and non-tree surveyed markers (posts and stones) in early European settlement land surveys to reconstruct the vegetation and compare vegetation by broad scale (mountains and valleys) and local scale (topographic classes with mountains and valleys) topography. I calculated marker density based on 2 km x 2 km grid cells to assess tree-cutting impacts. Valleys were mostly forests dominated by white oak (Quercus alba) with abundant hickory (Carya spp.), pine (Pinus spp.), and black oak (Quercus velutina), while pine dominated what were mostly pine-oak forests in the mountains. Within the valleys, pine was strongly associated with hilltops, eastern hemlock (Tsuga canadensis) was abundant on north slopes, hickory was associated with south slopes, and riparian zones had high frequencies of ash (Fraxinus spp.) and hickory. In the mountains, white oak was infrequent on south slopes, chestnut (Castanea dentata) was more abundant on south slopes and ridgetops than north slopes and mountain coves, and white oak and maple (Acer spp.) were common in riparian zones. Marker density analysis suggests that trees were still common over most of the landscape by 1855. The findings suggest there were large differences in vegetation between valleys and mountains due in part to differences in elevation, and vegetation differed more by topographic classes in the valleys than in the mountains. Possible areas of tree-cutting were evenly distributed by topographic classes, suggesting Europeans settlers were clearing land and harvesting timber in most areas of Union County.
Resumo:
Recent claims of blood vessels extracted from dinosaur fossils challenge classical views of soft-tissue preservation. Alternatively, these structures may represent postdepositional,diagenetic biofilms that grew on vascular cavity surfaces within the fossil. Similar red, hollow, tube-shaped structures were recovered from well-preserved and poorly-preserved (abraded, desiccated, exposed) Upper Cretaceous dinosaur fossils in this study. Integration of light microscopy, scanning electron microscopy, and energy dispersive x-ray spectroscopy was used to compare these vessel structures to the fossils from which they are derived. Vessel structures are typically 100-400 μm long, 0.5-1.5 μm thick, 10-40 μm in diameter and take on a wide range of straight, curved, andbranching morphologies. Interior surfaces vary from smooth to globular and typically contain spheres, rods, and fibrous structures (< 2 μm in diameter) incorporated into the surface. Exterior surfaces exhibit 2-μm-tall converging ridges, spaced 1-3 μm apart, that are sub-parallel to the long axis of the vessel structure. Fossil vascular cavities are typically coated with a smooth or grainy orange layer that shows a wide range of textures including smooth, globular, rough, ropy, and combinations thereof. Coatings tend to overlay secondary mineral crystals and framboids, confirming they are not primary structures of the fossil. For some cavity coatings, the surface that had been in contact with the bone exhibits a ridged texture, similar to that of vessel structures, having formed as a mold of the intravascular bone surface. Thus, vessel structures are interpreted as intact cavity coatings isolated after the fossil is demineralized. The presence of framboids and structures consistent in size and shape with bacteria cells, the abundance of iron in cavity coatings, and the growth of biofilms directly from the fossil that resemble respective cavity coatings support the hypothesis that vessel structures result from ironconsuming bacteria that form biofilms on the intravascular bone surfaces of fossil dinosaur bone. This also accounts for microstructures resembling osteocytes as some fossil lacunae are filled with the same iron oxide that comprises vessel structures andcoatings. Results of this study show that systematic, high-resolution SEM analyses of vertebrate fossils can provide improved insight on microtaphonomic processes, including the role of bacteria in diagenesis. These results conflict with earlier claims of dinosaurblood vessels and osteocytes.