4 resultados para TRIPLET-TRIPLET ANNIHILATION

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potential energy curves have been computed for [C2H6]2+ ions and the results used to interpret the conspicuous absence of these ions in 2E mass spectra and in charge-stripping experiments. The energies and structures of geometry-optimized ground-state singlet and excited-state triplet [C2H6]2+ ions have been determined along with energies for different decomposition barriers and dissociation asymptotes. Although singlet and triplet [C2H6]2+ ions can exist as stable entities, they possess low energy barriers to decomposition. Vertical Franck-Condon transitions, involving electron impact ionization of ethane as well as charge-stripping collisions of [C2H6]+ ions, produce [C2H6]2+ ions which promptly dissociate since they are formed with energies in excess of various decomposition barriers. Appearance energies computed for doubly-charged ethane fragment ions are in accordance with experimental values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energetics, structures, stabilities and reactivities of[CnH2]2+ ions have been investigated using computational methods and experimental mass spectrometric techniques. Spontaneous decompositions of [CnH2]2+ into [CnH]+ + H+ products, observed for ions with odd-n values, have been explained by invoking the formation of excited triplet states. Even-n [CnH]+ ions possess triplet ground states with low-lying excited states, whereas odd-n ions have triplet states with energies several eV above ground singlet states. Radiationless transitions of vibrationally excited long-lived triplet state ions into singlet state continua are suggested as possible mechanisms for spontaneous deprotonation processes of odd-n [CnH2]2+ ions. Evidence for these long-lived excited states has been obtained in bimolecular single electron transfer reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the long time dynamics of a strong glass former, SiO2, below the glass transition temperature by averaging single-particle trajectories over time windows which comprise roughly 100 particle oscillations. The structure on this coarse-grained time scale is very well defined in terms of coordination numbers, allowing us to identify ill-coordinated atoms, which are called defects in the following. The most numerous defects are O-O neighbors, whose lifetimes are comparable to the equilibration time at low temperature. On the other hand, SiO and OSi defects are very rare and short lived. The lifetime of defects is found to be strongly temperature dependent, consistent with activated processes. Single-particle jumps give rise to local structural rearrangements. We show that in SiO2 these structural rearrangements are coupled to the creation or annihilation of defects, giving rise to very strong correlations of jumping atoms and defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A positron and electron can form the bound state called positronium. When positronium is formed in a porous material, its lifetime is based on the electron density of the pore walls, temperature, and pore size according the Rectangular Extenstion to the Tao-Eldrup Model. Positronium Annihilation Lifetime Spectroscopy is an established technique of finding positronium lifetimes. Using this technique, we find positronium lifetimes at various temperatures and compare these to the expectations of the model. We find that the pore size relationship is consistent, but more data must be gathered under different conditions in order to draw conclusions about relationships between lifetime, temperature, and pore size.