2 resultados para Survival.

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telomeres are protective structures at the ends of eukaryotic chromosomes. The loss of telomeres through cell division and oxidative stress is related to cellular aging, organismal growth and disease. In this way, telomeres link molecular and cellular mechanisms with organismal processes, and may explain variation in a number of important life-history traits. Here, we discuss how telomere biology relates to the study of physiological ecology and life history evolution. We emphasize current knowledge on how telomeres may relate to growth, survival and lifespan in natural populations. We finish by examining interesting new connections between telomeres and the glucocorticoid stress response. Glucocorticoids are often employed as indices of physiological condition, and there is evidence that the glucocorticoid stress response is adaptive. We suggest that one way that glucocorticoids impact organismal survival is through elevated oxidative stress and telomere loss. Future work needs to establish and explore the link between the glucocorticoid stress response and telomere shortening in natural populations. If a link is found, it provides an explanatory mechanism by which environmental perturbation impacts life history trajectories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The widespread mortality of hibernating bats is associated with the emerging infectious disease white-nose syndrome (WNS), and has provoked a strong interest in understanding which bats will survive, and why? The ability of infected bats to resist WNS may depend upon variation in the expression of different characteristics. In a captive colony of big brown bats, I sought to characterize the phenotypic variability, repeatability, and survivability for several key ¿survival¿ traits, including: torpor patterns, microclimate preferences, and wound healing capacity. Torpor patterns were profiled using temperature sensitive dataloggers throughout the hibernation season, while microclimate preferences were quantified by using temperature-graded boxes and thermal imaging. In order to assess wound healing capacity, small wing biopsies were obtained from each bat and healing progress was tracked for one month. Individuals exhibited a wide range of phenotypes that were significantly influenced by sex and body condition. Repeatability estimates suggest that there is not a strong genetic basis for the observed variation in torpor patterns or microclimate preferences. Certain phenotypes (e.g., BMI) were associated with an increased probability of overwinter survivorship, which suggests a basis for intra-species differences in WNS susceptibility. The results from this project provide novel insight into what we know about ¿who will survive,¿ and will influence the direction and implementation of future conservation and mitigation strategies.