6 resultados para Supracrustal Belt

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New geochronologic, geochemical, sedimentologic, and compositional data from the central Wrangell volcanic belt (WVB) document basin development and volcanism linked to subduction of overthickened oceanic crust to the northern Pacific plate margin. The Frederika Formation and overlying Wrangell Lavas comprise >3 km of sedimentary and volcanic strata exposed in the Wrangell Mountains of south-central Alaska (United States). Measured stratigraphic sections and lithofacies analyses document lithofacies associations that reflect deposition in alluvial-fluvial-lacustrine environments routinely influenced by volcanic eruptions. Expansion of intrabasinal volcanic centers prompted progradation of vent-proximal volcanic aprons across basinal environments. Coal deposits, lacustrine strata, and vertical juxtaposition of basinal to proximal lithofacies indicate active basin subsidence that is attributable to heat flow associated with intrabasinal volcanic centers and extension along intrabasinal normal faults. The orientation of intrabasinal normal faults is consistent with transtensional deformation along the Totschunda-Fairweather fault system. Paleocurrents, compositional provenance, and detrital geochronologic ages link sediment accumulation to erosion of active intrabasinal volcanoes and to a lesser extent Mesozoic igneous sources. Geochemical compositions of interbedded lavas are dominantly calc-alkaline, range from basaltic andesite to rhyolite in composition, and share geochemical characteristics with Pliocene-Quaternary phases of the western WVB linked to subduction-related magmatism. The U/Pb ages of tuffs and Ar-40/Ar-39 ages of lavas indicate that basin development and volcanism commenced by 12.5-11.0 Ma and persisted until at least ca. 5.3 Ma. Eastern sections yield older ages (12.5-9.3 Ma) than western sections (9.6-8.3 Ma). Samples from two western sections yield even younger ages of 5.3 Ma. Integration of new and published stratigraphic, geochronologic, and geochemical data from the entire WVB permits a comprehensive interpretation of basin development and volcanism within a regional tectonic context. We propose a model in which diachronous volcanism and transtensional basin development reflect progressive insertion of a thickened oceanic crustal slab of the Yakutat microplate into the arcuate continental margin of southern Alaska coeval with reported changes in plate motions. Oblique northwestward subduction of a thickened oceanic crustal slab during Oligocene to Middle Miocene time produced transtensional basins and volcanism along the eastern edge of the slab along the Duke River fault in Canada and subduction-related volcanism along the northern edge of the slab near the Yukon-Alaska border. Volcanism and basin development migrated progressively northwestward into eastern Alaska during Middle Miocene through Holocene time, concomitant with a northwestward shift in plate convergence direction and subduction collision of progressively thicker crust against the syntaxial plate margin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detrital zircon and igneous zircon U-Pb ages are reported from Proterozoic metamorphic rocks in northern New Mexico. These data give new insight into the provenance and depositional age of a >3-km-thick metasedimentary succession and help resolve the timing of orogenesis within an area of overlapping accretionary orogens and thermal events related to the Proterozoic tectonic evolution of southwest Laurentia. Three samples from the Paleoproterozoic Vadito Group yield narrow, unimodal detrital zircon age spectra with peak ages near 1710 Ma. Igneous rocks that intrude the Vadito Group include the Cerro Alto metadacite, the Picuris Pueblo granite, and the Penasco quartz monzonite and yield crystallization ages of 1710 +/- 10 Ma, 1699 +/- 3 Ma, and 1450 +/- 10 Ma, respectively. Within the overlying Hondo Group, a metamorphosed tuff layer from the Pilar Formation yields an age of 1488 +/- 6 Ma and represents the first direct depositional age constraint on any part of the Proterozoic metasedimentary succession in northern New Mexico. Detrital zircon from the overlying Piedra Lumbre Formation yield a minimum age peak of 1475 Ma, and similar to 60 grains (similar to 25%) yield ages between 1500 Ma and 1600 Ma, possibly representing non-Laurentian detritus originating from Australia and/or Antarctica. Detrital zircons from the basal metaconglomerate and the middle quartzite member of the Marquenas Formation yield minimum age peaks of 1472 Ma and 1471 Ma, consistent with earlier results. We interpret the onset of ca. 1490-1450 Ma deposition followed by tectonic burial, regional Al2SiO5 triple-point metamorphism, and ductile deformation at depths of 12-18 km to reflect a Mesoproterozoic contractional orogenic event, possibly related to the final suturing of the Mazatzal crustal province to the southern margin of Laurentia. We propose to call this event the Picuris orogeny.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Longitudinal barriers, such as guardrails, are designed to prevent a vehicle that leaves the roadway from impacting a more dangerous object while minimizing the risk of injury to the vehicle occupants. Current full-scale test procedures for these devices do not consider the effect of occupant restraints such as seatbelts and airbags. The purpose of this study was to determine the extent to which restraints are used or deployed in longitudinal barrier collisions and their subsequent effect on occupant injury. Methods: Binary logistic regression models were generated to predict occupant injury risk using data from the National Automotive Sampling System / Crashworthiness Data System from 1997 through 2007. Results: In tow-away longitudinal barrier crashes, airbag deployment rates were 70% for airbag-equipped vehicles. Compared with unbelted occupants without an airbag available, seat belt restrained occupants with an airbag available had a dramatically decreased risk of receiving a serious (MAIS 3+) injury (odds-ratio (OR)=0.03; 95% CI: 0.004- 0.24). A similar decrease was observed among those restrained by seat belts, but without an airbag available (OR=0.03; 95% CI: 0.001- 0.79). No significant differences in risk of serious injuries were observed between unbelted occupants with an airbag available compared with unbelted occupants without an airbag available (OR=0.53; 95% CI=0.10-2.68). Impact on Industry: This study refutes the perception in the roadside safety community that airbags rarely deploy in frontal barrier crashes, and suggests that current longitudinal barrier occupant risk criteria may over-estimate injury potential for restrained occupants involved in a longitudinal barrier crash.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most people intuitively understand what it means to “hear a tune in your head.” Converging evidence now indicates that auditory cortical areas can be recruited even in the absence of sound and that this corresponds to the phenomenological experience of imagining music. We discuss these findings as well as some methodological challenges. We also consider the role of core versus belt areas in musical imagery, the relation between auditory and motor systems during imagery of music performance, and practical implications of this research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is the first detailed study of the westernmost portion of the outcrop belt, which extends along the western flank of the Talkeetna Mountains and includes thick, well-exposed outcrops along Willow Creek in the eastern Susitna basin. New sedimentologic, compositional, and geochronologic data were obtained from stratigraphic sections within Arkose Ridge Formation strata at Willow Creek. This data combined with new geologic mapping and geochronologic data from Willow Bench and Kashwitna River Bluff (north of Willow Creek), and from the Government Peak area (east of Willow Creek), help constrain depositional processes and source terranes that provided detritus to the westernmost Arkose Ridge Formation strata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two competing models exist for the formation of the Pennsylvania salient, a widely studied area of pronounced curvature in the Appalachian mountain belt. The viability of these models can be tested by compiling and analyzing the patterns of structures within the general hinge zone of the Pennsylvania salient. One end-member model suggests a NW-directed maximum shortening direction and no rotation through time in the culmination. An alternative model requires a two-phase development of the culmination involving NNW-directed maximum shortening overprinted by WNW-directed maximum shortening. Structural analysis at 22 locations throughout the Valley and Ridge and southern Appalachian Plateau Provinces of Pennsylvania are used to constrain orientations of the maximum shortening direction and establish whether these orientations have rotated during progressive deformation in the Pennsylvania salient's hinge. Outcrops of Paleozoic sedimentary rocks contain several orders of folds, conjugate faults, steeply dipping strike-slip faults, joints, conjugate en echelon gash vein arrays, spaced cleavage, and grain-scale finite strain indicators. This suite of structures records a complex deformation history similar to the Bear Valley sequence of progressive deformation. The available structural data from the Juniata culmination do not show a consistent temporal rotation of shortening directions and generally indicate uniform,