7 resultados para Styrene

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dibrominated polystyrene (BrPStBr) was produced by atom transfer radical polymerization (ATRP) at 80 degrees C, using the bifunctional initiator benzal bromide to afford the telechelic precursor. The ATRP reaction was stopped around 40% monomer conversion and directly converted into an radical trap-assisted atom transfer radical coupling (RTA-ATRC) reaction by lowering the temperature to 50 degrees C, and adding the radical trap 2-methyl-2-nitrosopropane (MNP) along with additional catalyst, reducing agent, and ligand to match ATRC-type reaction conditions. In an attempt to induce intramolecular coupling, rather than solely intermolecular coupling and elongation, the total reaction volume was increased by the addition of varying amounts of THF. Cyclization, along with intermolecular coupling and elongation, occurred in all cases, with the extent of ring closure a function of the total reaction volume. The cyclic portion of the coupled product was found to have a (G) value around 0.8 by GPC analysis, consistent with the reduction in hydrodynamic volume of a cyclic polymer compared to its linear analog. Analysis of the sequence by H-1 NMR confirmed that propagation was suppressed nearly completely during the RTA-ATRC phase, with percent monomer conversion remaining constant after the ATRP phase. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of cyclic polystyrene (Pst) with an alkoxyamine functionality has been accomplished by intramolecular radical coupling in the presence of a nitroso radical trap Linear alpha,omega-dibrominated polystyrene, produced by the atom transfer radical polymerization (ATRP) of styrene using a dibrominated initiator, was subjected to chain-end activation via the atom transfer radical coupling (ATRC) process under pseudodilute conditions in the presence of 2-methyl-2-nitrosopropane (MNP). This radical trap-assisted, intramolecular ATRC (RTA-ATRC) produced cyclic polymers in greater than 90% yields possessing < G > values in the 0.8-0.9 range as determined by gel permeation chromatography (GPC). Thermal-induced opening of the cycles, made possible by the incorporated alkoxyamine, resulted in a return to the original apparent molecular weight, further supporting the formation of cyclic polymers in the RTA-ATRC reaction. Liquid chromatography-mass spectrometry (LC-MS) provided direct confirmation of the cyclic architecture and the incorporation of the nitroso group into the macrocycle RTA-ATRC cyclizations carried out with faster rates of polymer addition into the redox active solution and/or in the presence of a much larger excess of MNP (up to a 250:1 ratio of MNP:C-Br chain end) still yielded cyclic polymers that contained alkoxyamine functionality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The curriculum of the Bucknell University Chemical Engineering Department includes a required senior year capstone course titled Process Engineering, with an emphasis on process design. For the past ten years library research has been a significant component of the coursework, and students working in teams meet with the librarian throughout the semester to explore a wide variety of information resources required for their project. The assignment has been the same from 1989 to 1999. Teams of students are responsible for designing a safe, efficient, and profitable process for the dehydrogenation of ethylbenzene to styrene monomer. A series of written reports on their chosen process design is a significant course outcome. While the assignment and the specific chemical technology have not changed radically in the past decade, the process of research and discovery has evolved considerably. This paper describes the solutions offered in 1989 to meet the information needs of the chemical engineering students at Bucknell University, and the evolution in research brought about by online databases, electronic journals, and the Internet, making the process of discovery a completely different experience in 1999.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The atom transfer radical polymerization (ATRP) of styrene (St) was conducted in the presence of varying equivalence (eq) of hexafluorobenzene (HFB) and octafluorotoluene (OFT) to probe the effects of pi-pi stacking on the rate of the polymerization and on the tacticity of the resulting polystyrene (PSt). The extent of the pi-pi stacking interaction between HFB/OFT and the terminal polystyrenic phenyl group was also investigated as a function of solvent, both non-aromatic solvents (THF and hexanes) and aromatic solvents (benzene and toluene). In all cases the presence of HFB or OFT resulted in a decrease in monomer conversion indicating a reduction in the rate of the polymerization with greater retardation of the rate with increase eq of HFB or OFT (0.5 eq to 1 eq HFB/OFT compared to St). Additionally, when aromatic solvents were used instead of non-aromatic solvents the effect of the HFB/OFT on the rate was minimized, consistent with the aromatic solvent competitively interacting with the HFB/OFT. The effects of temperature and ligand strength on the ATRP of St in the presence of HFB were also probed. It was found that when using N,N,N’,N’,N’’-pentamethyldiethylenetriamine (PMDETA) as the ligand the effects of HFB at 38o were the same as at 86oC. When tris[2-(dimethylamino)ethyl]-amine (Me6TREN) was used as the ligand at 38o there was a decrease in monomer conversion similar to the analogous PMDETA reaction. When the polymerization was conducted at 86oC there was no effect on the monomer conversion with HFB present compared to when HFB was absent. To investigate the pi-pi stacking effect even further, the reverse pi-pi stacking system was observed by conducting the ATRP of pentafluorostyrene (PFSt) in the presence of varying eq of benzene and toluene, which in both cases resulted in an increase in monomer conversion compared to when benzene or toluene were absent; in summary the rate of the ATRP of PFSt increases when benzene or toluene waas present in the reaction. The pi-pi stacking interaction between the HFB/OFT and the dormant alkyl bromide of the polymer chain was verified by 1H-NMR with 1-bromoethylbenzene as the alkyl bromide. Also verified by 1H-NMR was the interaction between HFB/OFT and St and the interaction between PFSt and benzene. In all 1H-NMR spectra a perturbation in the aromatic and/or vinyl peaks was observed when the pi-pi stacking agent was present compared to when it was absent. The tacticity of the PSt formed in the presence of 1 eq of HFB was compared to the PSt formed in the absence of HFB by observing the C1 signal in their 13C-NMR spectra, but no change in shape or chemical shift of the signal was observed indicating that there was no change in tacticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monobrominated diblock copolymers composed of poly(styrene) (PSt), poly(methylacrylate) (PMA), or poly(methyl methacrylate) (PMMA) were synthesized by consecutive atom transfer radical polymerizations (ATRP). The brominated diblocks were utilized in atom transfer radical coupling (ATRC) and radical trap-assisted ATRC (RTA-ATRC) reactions to form ABA type triblock copolymers. Once PMMA-PStBr and PSt-PMABrBr were produced by ATRP, the synthes of PSt-PMA-PSt and PMMA-PSt- PMMA by ATRC and also by RTA-ATRC were attempted. The coupling methods were compared and it was found that RTA-ATRC succeeded in synthesizing PSt-PMA-PSt where ATRC could not, and that RTA-ATRC improved coupling over ATRC for PMMAPSt- PMMA. Incorporation of the radical trap 2-methyl-2-nitrosopropane (MNP) midchain allowed for simple thermal cleavage of the triblock to confirm the RTA-ATRC pathway occurred in preference over the head to head radical coupling pathway of ATRC. Triblocks made by ATRC did not cleave under our conditions, as no MNP was present and thus no labile C-O bond was incorporated. The RTA-ATRC pathway allowed for lower catalyst amounts (2 molar equivalents of copper(I)bromide and 2 molar equivalents of copper metal) and a high degree of coupling at lower temperatures (40°C). The RTA-ATRC improved upon ATRC because of its ability to generate a persistent radical and proceed by first order kinetics with respect to the chain end radical.