2 resultados para Stress tensor equations
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
This study investigates the feasibility of predicting the momentamplification in beam-column elements of steel moment-resisting frames using the structure's natural period. Unlike previous methods, which perform moment-amplification on a story-by-story basis, this study develops and tests two models that aim to predict a global amplification factor indicative of the largest relevant instance of local moment amplification in the structure. To thisend, a variety of two-dimensional frames is investigated using first and secondorder finite element analysis. The observed moment amplification is then compared with the predicted amplification based on the structure's natural period, which is calculated by first-order finite element analysis. As a benchmark, design moment amplification factors are calculated for each story using the story stiffness approach, and serve to demonstrate the relativeconservatism and accuracy of the proposed models with respect to current practice in design. The study finds that the observed moment amplification factors may vastly exceed expectations when internal member stresses are initially very small. Where the internal stresses are small relative to the member capacities, thesecases are inconsequential for design. To qualify the significance of the observed amplification factors, two parameters are used: the second-order moment normalized to the plastic moment capacity, and the combined flexural and axial stress interaction equations developed by AISC
Resumo:
We use a conceptual model to investigate how randomly varying building heights within a city affect the atmospheric drag forces and the aerodynamic roughness length of the city. The model is based on the assumptions regarding wake spreading and mutual sheltering effects proposed by Raupach (Boundary-Layer Meteorol 60:375-395, 1992). It is applied both to canopies having uniform building heights and to those having the same building density and mean height, but with variability about the mean. For each simulated urban area, a correction is determined, due to height variability, to the shear stress predicted for the uniform building height case. It is found that u (*)/u (*R) , where u (*) is the friction velocity and u (*R) is the friction velocity from the uniform building height case, is expressed well as an algebraic function of lambda and sigma (h) /h (m) , where lambda is the frontal area index, sigma (h) is the standard deviation of the building height, and h (m) is the mean building height. The simulations also resulted in a simple algebraic relation for z (0)/z (0R) as a function of lambda and sigma (h) /h (m) , where z (0) is the aerodynamic roughness length and z (0R) is z (0) found from the original Raupach formulation for a uniform canopy. Model results are in keeping with those of several previous studies.