5 resultados para Steady state solutions

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a homogeneously driven granular fluid of hard spheres at intermediate volume fractions and focus on time-delayed correlation functions in the stationary state. Inelastic collisions are modeled by incomplete normal restitution, allowing for efficient simulations with an event-driven algorithm. The incoherent scattering function Fincoh(q,t ) is seen to follow time-density superposition with a relaxation time that increases significantly as the volume fraction increases. The statistics of particle displacements is approximately Gaussian. For the coherent scattering function S(q,ω), we compare our results to the predictions of generalized fluctuating hydrodynamics, which takes into account that temperature fluctuations decay either diffusively or with a finite relaxation rate, depending on wave number and inelasticity. For sufficiently small wave number q we observe sound waves in the coherent scattering function S(q,ω) and the longitudinal current correlation function Cl(q,ω). We determine the speed of sound and the transport coefficients and compare them to the results of kinetic theory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This is the second part of a study investigating a model-based transient calibration process for diesel engines. The first part addressed the data requirements and data processing required for empirical transient emission and torque models. The current work focuses on modelling and optimization. The unexpected result of this investigation is that when trained on transient data, simple regression models perform better than more powerful methods such as neural networks or localized regression. This result has been attributed to extrapolation over data that have estimated rather than measured transient air-handling parameters. The challenges of detecting and preventing extrapolation using statistical methods that work well with steady-state data have been explained. The concept of constraining the distribution of statistical leverage relative to the distribution of the starting solution to prevent extrapolation during the optimization process has been proposed and demonstrated. Separate from the issue of extrapolation is preventing the search from being quasi-static. Second-order linear dynamic constraint models have been proposed to prevent the search from returning solutions that are feasible if each point were run at steady state, but which are unrealistic in a transient sense. Dynamic constraint models translate commanded parameters to actually achieved parameters that then feed into the transient emission and torque models. Combined model inaccuracies have been used to adjust the optimized solutions. To frame the optimization problem within reasonable dimensionality, the coefficients of commanded surfaces that approximate engine tables are adjusted during search iterations, each of which involves simulating the entire transient cycle. The resulting strategy, different from the corresponding manual calibration strategy and resulting in lower emissions and efficiency, is intended to improve rather than replace the manual calibration process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Towards the goal of investigating the possible Twisted Intramolecular Charge Transfer (TICT) state mechanism of fluorescence emission, two aromatic dicyanovinyl compounds, 2-(naphthalene-2-ylmethylene) malononitrile (DCN) and a rigidified analogue, 3,4-dihydrophenanthren-1(2H)-ylidene)malononitrile (RDCN) were synthesized and their absorption and steady-state fluorescence emission spectra characterized. The spectral characterization was divided into two studies: first, DCN and RDCN were characterized in liquid solvents of increasing polarity; second, DCN and RDCN were characterized in viscous solvents and rigid glass media. The absorption spectra for both DCN and RDCN in all solvents demonstrated little to no solvatochromism. Emission results for DCN and RDCN in liquid solvents of increasing polarity showed DCN possessing strong solvatochromism while RDCN showed much less solvatochromism. Using the Lippert-Mataga equation, the difference between the ground and excited state dipole moment for DCN was estimated to be 8.4 + 0.4 Debye and between ~3.0 to 5.0 Debye for RDCN. Quantum yield measurements for DCN and RDCN in hexane, diethyl ether and acetonitrile were less than 0.01 and independent of polarity for both both solvents, with DCN generally possessing a quantum yield 3-4 times greater than RDCN. Experiments in glass media for DCN and RDCN showed a lessening of their solvatochromic character in both polar and non-polar glasses. These data provide strong evidence for a link between molecular flexibility and solvatochromism. However, while these data are consistent with a TICT state hypothesis for the emission mechanism, an alternative mechanism proposed by Maroncelli et al.10 involving rotation about the dicyanovinyl double bond in the excited state remains a possibility as well.