1 resultado para Statistical inference

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rock-pocket and honeycomb defects impair overall stiffness, accelerate aging, reduce service life, and cause structural problems in hardened concrete members. Traditional methods for detecting such deficient volumes involve visual observations or localized nondestructive methods, which are labor-intensive, time-consuming, highly sensitive to test conditions, and require knowledge of and accessibility to defect locations. The authors propose a vibration response-based nondestructive technique that combines experimental and numerical methodologies for use in identifying the location and severity of internal defects of concrete members. The experimental component entails collecting mode shape curvatures from laboratory beam specimens with size-controlled rock pocket and honeycomb defects, and the numerical component entails simulating beam vibration response through a finite element (FE) model parameterized with three defect-identifying variables indicating location (x, coordinate along the beam length) and severity of damage (alpha, stiffness reduction and beta, mass reduction). Defects are detected by comparing the FE model predictions to experimental measurements and inferring the low number of defect-identifying variables. This method is particularly well-suited for rapid and cost-effective quality assurance for precast concrete members and for inspecting concrete members with simple geometric forms.