2 resultados para Static bending
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
While beneficially decreasing the necessary incision size, arthroscopic hip surgery increases the surgical complexity due to loss of joint visibility. To ease such difficulty, a computer-aided mechanical navigation system was developed to present the location of the surgical tool relative to the patient¿s hip joint. A preliminary study reduced the position error of the tracking linkage with limited static testing trials. In this study, a correction method, including a rotational correction factor and a length correction function, was developed through more in-depth static testing. The developed correction method was then applied to additional static and dynamic testing trials to evaluate its effectiveness. For static testing, the position error decreased from an average of 0.384 inches to 0.153 inches, with an error reduction of 60.5%. Three parameters utilized to quantify error reduction of dynamic testing did not show consistent results. The vertex coordinates achieved 29.4% of error reduction, yet with large variation in the upper vertex. The triangular area error was reduced by 5.37%, however inconsistent among all five dynamic trials. Error of vertex angles increased, indicating a shape torsion using the developed correction method. While the established correction method effectively and consistently reduced position error in static testing, it did not present consistent results in dynamic trials. More dynamic paramters should be explored to quantify error reduction of dynamic testing, and more in-depth dynamic testing methodology should be conducted to further improve the accuracy of the computer-aided nagivation system.
Resumo:
Acrylic bone cement is widely used to anchor orthopedic implants to bone and mechanical failure of the cement mantle surrounding an implant can contribute to aseptic loosening. In an effort to enhance the mechanical properties of bone cement, a variety of nanoparticles and fibers can be incorporated into the cement matrix. Mesoporous silica nanoparticles (MSNs) are a class of particles that display high potential for use as reinforcement within bone cement. Therefore, the purpose of this study was to quantify the impact of modifying an acrylic cement with various low-loadings of mesoporous silica. Three types of MSNs (one plain variety and two modified with functional groups) at two loading ratios (0.1 and 0.2 wt/wt) were incorporated into a commercially available bone cement. The mechanical properties were characterized using four-point bending, microindentation and nanoindentation (static, stress relaxation, and creep) while material properties were assessed through dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, FTIR spectroscopy, and scanning electron microscopy. Four-point flexural testing and nanoindentation revealed minimal impact on the properties of the cements, except for several changes in the nano-level static mechanical properties. Conversely, microindentation testing demonstrated that the addition of MSNs significantly increased the microhardness. The stress relaxation and creep properties of the cements measured with nanoindentation displayed no effect resulting from the addition of MSNs. The measured material properties were consistent among all cements. Analysis of scanning electron micrographs images revealed that surface functionalization enhanced particle dispersion within the cement matrix and resulted in fewer particle agglomerates. These results suggest that the loading ratios of mesoporous silica used in this study were not an effective reinforcement material. Future work should be conducted to determine the impact of higher MSN loading ratios and alternative functional groups. (C) 2014 Elsevier Ltd. All rights reserved.