2 resultados para Solar water heaters
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
A new concept for a solar thermal electrolytic process was developed for the production of H-2 from water. A metal oxide is reduced to a lower oxidation state in air with concentrated solar energy. The reduced oxide is then used either as an anode or solute for the electrolytic production of H-2 in either an aqueous acid or base solution. The presence of the reduced metal oxide as part of the electrolytic cell decreases the potential required for water electrolysis below the ideal 1.23 V required when H-2 and O-2 evolve at 1 bar and 298 K. During electrolysis, H-2 evolves at the cathode at 1 bar while the reduced metal oxide is returned to its original oxidation state, thus completing the H-2 production cycle. Ideal sunlight-to-hydrogen thermal efficiencies were established for three oxide systems: Fe2O3-Fe3O4, Co3O4-CoO, and Mn2O3-Mn3O4. The ideal efficiencies that include radiation heat loss are as high or higher than corresponding ideal values reported in the solar thermal chemistry literature. An exploratory experimental study for the iron oxide system confirmed that the electrolytic and thermal reduction steps occur in a laboratory scale environment.
Resumo:
It has been speculated that the presence of OH(H2O)n clusters in the troposphere could have significant effects on the solar absorption balance and the reactivity of the hydroxyl radical. We have used the G3 and G3B3 model chemistries to model the structures and predict the frequencies of hydroxyl radical/water clusters containing one to five water molecules. The reaction between hydroxyl radical clusters and methane was examined as a function of water cluster size to gain an understanding of how cluster size affects the hydroxyl radical reactivity.