5 resultados para Sobolev inner products

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that to each inner function, there corresponds at least one interpolating Blaschke product whose angular derivatives have precisely the same behavior as the given inner function. We characterize the Blaschke products invertible in the closed algebra H-infinity[(b) over bar : b has finite angular derivative everywhere. We study the most well-known example of a Blaschke product with infinite angular derivative everywhere and show that it is an interpolating Blaschke product. We conclude the paper with a method for constructing thin Blaschke products with infinite angular derivative everywhere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that to each inner function, there corresponds at least one interpolating Blaschke product whose angular derivatives have precisely the same behavior as the given inner function. We characterize the Blaschke products invertible in the closed algebra generated by the algebra of bounded analytic functions and the conjugates of Blaschke products with angular derivative finite everywhere. We study the most well-known example of a Blaschke product with infinite angular derivative everywhere and show that it is an interpolating Blaschke product. We conclude the paper with a method for constructing thin Blaschke products with infinite angular derivative everywhere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the structure of inner functions under the operation of composition, and in particular the notions or primeness and semiprimeness. Results proved include the density of prime finite Blaschke products in the set of finite Blaschke products, the semiprimeness of finite products of thin Blaschke products and their approximability by prime Blaschke products. An example of a nonsemiprime Blaschke product that is a Frostman Blaschke product is also provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We construct an infinite uniform Frostman Blaschke product B such that B composed with itself is also a uniform Frostman Blaschke product. We also show that the set of uniform Frostman Blaschke products is open in the set of inner functions with the uniform norm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract This paper studies the structure of inner functions under the operation of composition, and in particular the notions or primeness and semiprimeness. Results proved include the density of prime finite Blaschke products in the set of finite Blaschke products, the semiprimeness of finite products of thin Blaschke products and their approximability by prime Blaschke products. An example of a nonsemiprime Blaschke product that is a Frostman Blaschke product is also provided.